首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater invasive or alien species (IAS) can have a major impact on benthic macroinvertebrate assemblage structure and diversity. This has implications for accurate biological monitoring, the assessment of the ecological quality status of rivers and achievement of Water Framework Directive (WFD) objectives. Although IAS constitutes a major biological pressure to WFD objectives, current approaches to ecological status assessment tend to ignore their presence. This problem is compounded as biotic indices such as the Biological Monitoring Working Party (BMWP) score do not distinguish between native and IAS, when IAS tend to be more tolerant of organic pollution than the natives they replace. Biocontamination is the presence of an IAS in a system, and we tested a new method of biocontamination assessment, designed to be used alongside current routine water quality monitoring techniques, by applying it to biological monitoring data from the river monitoring programme of a small Island, The Isle of Man. Although 54% of monitoring sites exhibited no biocontamination, 19% showed low or moderate biocontamination and 27% high or severe biocontamination. Richness contamination was low (only two contaminated families being recorded), but abundance contamination was high in some sites (87% of individuals being IAS). Sites with a greater relative abundance of IAS individuals exhibited lower BMWP water quality. Within invaded sites BMWP monitoring was not responsive to changing chemical water quality, whereas within uninvaded sites it was. In invaded sites, the relative abundance of IAS increased as ammonia and BOD5 increased. Our study shows current monitoring approaches mask the presence of AIS within assemblages, with some highly biocontaminated sites registering high BMWP biological quality. This new index represents a simple way to integrate the IAS biological pressure into established WFD monitoring programmes, to produce more comprehensive estimates of ecological quality status than are currently being realised.  相似文献   

2.
In most cases the negative impacts of climate change to aquatic ecosystems cannot be mitigated by measures in the river basin management. Ignoring climate change by the Water Framework Directive may have strong implications for the typology and quality assessment systems used for water bodies. As a result of climate change, water bodies, especially those located near the type boundaries may change their type. Compared to typology characteristics, water quality parameters are even more labile and may be easily affected by climate change. The paper exemplifies that the anticipated deterioration of water quality within the time frame relevant for WFD implementation may be large enough to endanger the fulfillment of the set water quality objectives. The review of the river basin characterization every six years, as required by the WFD, might also include re-evaluation of reference conditions according to the changes observed at pristine reference sites. As a consequence, the restoration targets (i.e., the good ecological status) would also need to be evaluated periodically.  相似文献   

3.
A first approach towards an integrated, macroinvertebrate based, river type specific system for the assessment and classification of the ecological quality in Greek rivers affected by nutrient enrichment is presented. This system, which was developed within the framework of the AQEM project application in Greece, is regionally adapted and integrated, since it contains a multitude of biotic and abiotic factors affecting taxa presences and abundances. The methodology applied is very promising for the application of the Water Framework Directive (WFD) in Greece. According to the AQEM project, a seasonal `multi habitat sampling' procedure, at 45 sampling sites, scattered over three river types, was applied. In addition, a large set of hydrological, morphological, geological, biological, hydrochemical parameters and anthropogenic factors were considered. The system is based on a new, river type specific biotic metric, adapted for Greek conditions (BMG) and a new nutrient pollution metric. The developed metrics showed high correlations with each other. Hence, BMG seems to be suitable for the ecological quality assessment of Greek running waters affected by nutrients. Moreover, by applying BMG, a final classification of the rivers into five quality classes, according to the demands of the WFD, was achieved.  相似文献   

4.
Diatoms are excellent ecological indicators of water quality because they are broadly distributed, they show high species diversity and they respond rapidly to human pressures. In Europe, the Water Framework Directive (WFD) gives the legal basis for the use of this indicator for water quality assessment and its management. Several quality indices, like the Specific Polluosensitivity Index (SPI), were developed to assess the ecological quality status of rivers based on diatom communities. It is based on morphological identifications and count of diatom species present in natural biofilms using a microscope. This methodology requires high taxonomic skills and several hours of analysis per sample as 400 individuals must be identified to species level. Since several years, a molecular approach based on DNA metabarcoding combined to High-Throughput Sequencing (HTS) is developed to characterize species assemblages in environmental samples which is potentially faster and cheaper. The ability of this approach to provide reliable diatom inventories has been demonstrated and its application to water quality assessment is currently being improved. Despite optimization of the DNA metabarcoding process with diatoms, few studies had yet extended it at the scale of a freshwater monitoring network and evaluated the reliability of its quality assessment compared to the classical morphological approach.In the present study we applied DNA metabarcoding to the river monitoring network of the tropical Island Mayotte. This island is a French département since 2011 and the WFD has to be applied. This offered the opportunity to scale up the comparison of molecular and morphological approaches and their ability to produce comparable community inventories and water quality assessments. Benthic diatoms were sampled following WFD standards in 45 river sites in 2014 and 2015 (80 samples). All samples were submitted in parallel to the molecular and the morphological approaches. DNA metabarcoding was carried out using Genelute DNA extraction method, rbcL DNA barcode and PGM sequencing, while microscopic counts were carried out for the classical methodology. Diatom community structures in terms of molecular (OTUs) and of morphological (species) were significantly correlated. However, only 13% of the species was shared by both approaches, with qualitative and quantitative variation due to i) the incompleteness of the reference library (82% of morphological species are not represented in the database), ii) limits in taxonomic knowledge and iii) biases in the estimation of relative abundances linked to diatom cell biovolume. However, ecological quality status assessed with the molecular and morphological SPI values were congruent, and little affected by sequencing depth. DNA metabarcoding of diatom communities allowed a reliable estimation of the quality status for most of the rivers at the scale of the full biomonitoring network of Mayotte Island.  相似文献   

5.
The Water Framework Directive (WFD) requires EU Member States to classify the ecological status of surface waters by using multiple biological quality elements (BQEs). According to the WFD Classification Guidance, a ‘one-out-all-out’ (OOAO) rule should be applied when integrating multiple BQEs into an overall biological status of a waterbody, i.e. classification is determined by the lowest status BQE. Using both simulated and monitoring datasets, we analyzed the effects of different combination rules in classification outcome and classification reliability. The OOAO represented the strictest combination rule in terms of increased probabilities of waterbodies being in moderate or worse status in comparison to other rules. The OOAO approach gave acceptable results when different BQEs were complementary, showing the effects of different pressures, and when level of uncertainty in the metrics used in the assessment was not high. Increasing the number of BQEs used in the assessment affected the classification outcome when using the OOAO approach; this was especially problematic if all BQEs address the same pressure. Our study showed that grouping of metrics and metrics uncertainty has a large influence on classification outcomes and that this should be carefully considered to ensure that final classification adequately reflects ecological status.  相似文献   

6.
《Ecological Indicators》2008,8(3):285-291
Community structure changes with pollution or stress. In the Water Framework Directive, high ecological status through biological parameters is defined as a slight or minor deviation from the reference community, while the good status is defined as a small deviation.To assess the importance of this deviation, and then to measure the degradation of ecological status along a river, an index based on the concept of “ecological distance” between species was created and called ecological distance index (EDI). It was tested on diatom data from a pilot watershed (the Garonne river basin, South-West France).The results show a good correlation between the EDI and the IPS (Indice de Pollusensibilité Spécifique – specific pollusensitivity index – a diatom-based biotic index) ecological ratios, which means first that the EDI is a valuable indicator of ecological status, and that it can account for ecoregional specificities. This index can be applied to any communities (macro-invertebrates, fish, etc.), since: (i) typical reference communities are found for each river type; (ii) species are characterised then ranked by pollution sensitivity values.  相似文献   

7.
The Water Framework Directive is the first international legislation to require European countries to establish comparable ecological assessment schemes for their freshwaters. A key element in harmonising quality classification within and between Europe's river basins is an “Intercalibration” exercise, stipulated by the WFD, to ensure that the good status boundaries in all of the biological assessment methods correspond to similar levels of anthropogenic pressure. In this article, we provide a comprehensive overview of this international comparison, focusing on the assessment schemes developed for freshwater lakes. Out of 82 lake ecological assessment methods reported for the comparison, 62 were successfully intercalibrated and included in the EC Decision on intercalibration, with a high proportion of phytoplankton (18), macrophyte (17) and benthic fauna (13) assessment methods. All the lake assessment methods are reviewed in this article, including the results of intercalibration. Furthermore, the current gaps and way forward to reach consistent management objectives for European lakes are discussed.  相似文献   

8.
Large-scale restoration of streams and rivers is a mandatory prerequisite for the implementation of the European Water Framework Directive (WFD) to reach good ecological status of water bodies. This contribution analyzes the success of the largest river restoration in Germany at the Upper Main. Sections with a length of more than 18 km were restored between 1990 and 2008, including re-connection of former oxbow-lakes, multiple-channelling, and establishment of wide riparian buffer zones.Measuring the success of restoration by means of a multimetric assessment system, we found a clear success of restoration indicated by the status of hydromorphology and by the biological parameters, including macroinvertebrates, fishes, and macrophytes. Unlike non-restored reaches, the restored reaches attained a good ecological status. As such, the restoration of the Upper Main is shown to be a pilot project for the implementation of the WFD on a large scale.  相似文献   

9.
The Water Framework Directive (WFD) requires intercalibration to be performed to ensure that ecological status, as defined by the boundary values of national biological assessment systems, is consistent with the definitions outlined in the WFD and comparable between Member States (MS). This article describes an intercalibration of 17 national river macro-invertebrate assessment methods from the Central and Baltic regions of Europe. We explore the hypothesis that intercalibration should be successful if ratios of the observed biota to that expected in reference condition are used to compare assessments of different national assessment systems. National boundaries expressed as ecological quality ratios (EQRs) were converted to values of a common multi-metric for the purpose of comparison. Twelve MS for the High/Good boundary and nine MS for the Good/Moderate boundary (and four MS who subsequently harmonised their boundaries) were within ±0.05 EQR units of the intercalibration boundaries and were deemed to be of comparable ecological standard. The use of a reference-based approach was deemed to be successful given that all the critical pre-requisites for intercalibration were satisfied. The boundaries derived from this intercalibration represent the first common interpretation of the ecological status of rivers based on macro-invertebrate assessment methods across Europe.  相似文献   

10.
Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.  相似文献   

11.
The EU-funded research project WISER (“Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery”) developed new assessment methods required by the EU Water Framework Directive (WFD) for lakes, coastal and transitional waters. WISER also addressed the recovery of biotic assemblages from degradation. The results are summarised in five key messages, supported by papers in this special issue and by WISER results published elsewhere: (1) Response to stress differs between organism groups, water types and stressors; a conceptual model is proposed summarising how the individual organism groups respond to different types of degradation in rivers, lakes, transitional and coastal waters. (2) The sources of uncertainty differ between BQEs and water types, leading to methodological suggestions on how to design WFD sampling programmes. (3) Results from about 300 current assessment methods indicate geographical variations in metrics but assessments are comparable at an aggregated level (“ecological status”). (4) Scale and time matter; restoration requires action at (sub)-basin levels and recovery may require decades. (5) Long-term trends require consideration; the effects of both degradation and restoration at the water body or river basin scales is increasingly superimposed by multiple stressors acting at large scales, in particular by climate change.  相似文献   

12.
The compliance of macroalgal and macroinvertebrate assemblages to anthropogenic disturbance gradients (e.g., nutrient enrichment) was investigated at intertidal rocky shores. Macroalgae and macroinvertebrates presented parallel behavior, both showing shifts in the communities’ structural variation along the gradients, in which an higher number of opportunistic species (and higher abundances) were found in more stressful sites (close to the disturbance source), in contrast to less disturbed sites (far from the disturbance source), which showed higher presence of more sensitive species (and higher abundance of several of them).The macroinvertebrate abundance and taxonomic composition, which are parameters required by the Water Framework Directive (WFD) to be included in tools for the ecological quality status assessment, responded to the disturbance gradient. Results suggest that the macroinvertebrate biological element might be considered an indicator of disturbance in intertidal rocky shores as good as the macroalgae, and therefore the development of a specific methodology based solely on benthic macroinvertebrates of rocky shores, presently a gap in the ecological quality status assessment for the WFD, seems feasible.  相似文献   

13.
A gap in the European Water Framework Directive (WFD) is addressed, aiming for the development of an ecological quality status assessment tool based solely on the Biological Quality Element benthic macroinvertebrates from intertidal rocky shores. The proposed Rocky shore Macroinvertebrates Assessment Tool (RMAT) was tested and validated along disturbance gradients (organic enrichment). During the whole process, the response of widely used metrics (e.g. Hurlbert index, Shannon-Wiener index, AZTI’s Marine Biotic Index; Bentix biotic index) and models (i.e., metrics combined) was compared to results provided by the Marine Macroalgae Assessment Tool to the same sampling sites.The RMAT is a multimetric index compliant with the WFD based on the benthic macroinvertebrates community, combining ‘abundance’ (Hurlbert index) and ‘taxonomic composition’ (Bentix index using density and biomass data) metrics. It performed well along anthropogenic disturbance gradients, showing ecological quality increasing from close to far away from the disturbance.The RMAT is a promising tool for rocky shore ecological assessment in the scope of the WFD or other monitoring activities worldwide.  相似文献   

14.
It is important that legislation on water quality issues of freshwaters is not in conflict with nature conservation purposes. So far, it is however unknown how the assessment of ecological status according to for example the Water Framework Directive (WFD) of the European Community relates to the status of lakes according to the Habitat Directive (HD) or to national environmental objectives including, e.g., the protection of important wetland areas and red-listed species. We used lake macrophyte classification schemes of Norway, Sweden, and Finland and a total of 1,014 lakes to evaluate the possible conflict between these directives and national legislation. The classification schemes represent mainly trophic indices penalizing lakes with elevated phosphorous concentrations. In general, high ecological status according to the WFD did not mean high number of red-listed species or high status according to the HD or other national environmental objectives. In Sweden 78%, in Norway 47%, and in Finland 29% of lakes with red-listed species were classified as lakes of moderate or worse ecological status based on the macrophyte classification scheme. These lakes thus did not fulfill the demands of the WFD. Restoration of surface water toward fulfilling the demands requires in practice a reduction of the trophic status. This might potentially result in for example the loss of red-listed species. To avoid such potential conflicts, we primarily suggest revising the national quality assessment systems toward implicitly incorporating nature conservation aspects, e.g., the number of red-listed species in a multi-metric assessment system.  相似文献   

15.
The river types in Wallonia (Belgium) were defined according to the system B of the European Water Framework Directive (WFD) taking into account obligatory and optional factors synthesized in three criteria: ‘size’, ‘slope’ and ‘natural region’. Under the hypothesis that benthic invertebrate assemblages would be specialized according to river type, a set of 627 faunal samples originating from an 11-year sampling period was tested to characterize river types with faunal assemblages. A multivariate approach led to gather 23 river types into seven groups exhibiting similar faunal assemblages. Using biocenotic metrics based on benthic invertebrate assemblages (e.g., the French standard IBGN), type-specific reference conditions and ecological status class limits were defined for each ‘natural’ river type group. Ecological potential was defined for heavily modified and for artificial (i.e., man-made canals) types. An ‘ecological status’ evaluation strategy was therefore developed and applied in the southern – and more natural – part of Wallonia, where many reference sites were available. In the northern part of Wallonia (i.e., the ‘Loess region’) where no high quality site was available, the expert judgement took a larger part in the definition of the reference conditions and of the ecological status class limits, in addition to the calculations. Two independent distribution gradients of taxa assemblages resulted from multivariate ordination: a first ‘saprobity axis’, as the taxa-sensitivity to organic contamination was increasing from ‘very resistant’ taxa (mainly located in the ‘Loess region’) to ‘sensitive’ and ‘very sensitive’ taxa (from the river types belonging to the Condroz, the Famenne, the Arden and the Jurassic regions) and a second axis characterizing the Meuse-specific faunal assemblage, gathering exotic species and typical limnophilous taxa of large heavily modified rivers. The ecological status monitoring management system developed in this study – i.e., the definition of faunal river type groups, related reference conditions and ecological status class limits – represents a proposal to be integrated in the ecological status assessment of biological elements for the implementation of the WFD and was tested in Wallonia. For the period 2000–2002 involving 349 different sites, the element ‘benthic invertebrate fauna’ was in that way classified ‘high status’ for 31.5% of sites, ‘good status’ for 31.5% and below ‘good status’ for 37% of sites. The best ecological status (i.e., 100% ‘high’ and ‘good’ status) was found in river type ‘Arden’s xenotrophic brooks with strong slope’ and in river types 8large rivers with medium slope’. The worst status was found in river types ‘Loess brooks and rivers with medium slope’.  相似文献   

16.
Rolauffs  Peter  Stubauer  Ilse  Zahrádková  Svetlana  Brabec  Karel  Moog  Otto 《Hydrobiologia》2004,516(1-3):285-298
The use of saprobic systems has long traditions in the water management in Austria, the Czech Republic and Germany. Within the context of water quality assessment they are applied to indicate the effects of anthropogenic caused organic impact leading to a decrease in the dissolved oxygen content of running waters. In December 2000 the European Union Water Framework Directive (WFD) came into force. It demands homogeneous procedures and methods for assessing inland surface waters as well as groundwater, coastal and transitional waters. The WFD focuses on the assessment of biotic elements and the ecological status has to be defined based on type specific approaches and reference conditions. To incorporate the saprobic approach into the new integrative methodology of the European assessment of the ecological status of water bodies, the national saprobic systems need to be adjusted. This paper describes the according methodological developments and adaptations of Austria, the Czech Republic, and Germany required to harmonise the traditional procedure with the guidelines of the WFD. In the three countries national databases were established to provide species lists from largely undisturbed stream sites. Such reference sites build the basis for calculating stream type specific reference values. The calculation has been done in slightly different ways dependent on the country. In addition to that boundaries were defined to characterise the 5 saprobic quality classes.  相似文献   

17.
18.
Environmental flows and the European Water Framework Directive   总被引:1,自引:0,他引:1  
1. Environmental flows is now a widely accepted term that covers the quantity, timing, duration, frequency and quality of water flows required to sustain freshwater, estuarine and near-shore ecosystems and the human livelihoods and well-being that depend on them.
2. The Water Framework Directive (WFD) of the European Union does not use the term environmental flows explicitly, but requires member states to achieve good ecological status (GES) in all waterbodies, which is assessed by reference to aquatic biology. Nevertheless, it is accepted that ecologically appropriate hydrological regimes are necessary to meet this status. Implementing environmental flows will be a key measure for restoring and managing river ecosystems.
3. The WFD explicitly requires stakeholder involvement, but this has been interpreted as largely a dissemination exercise by national government agencies. Stakeholders are no longer involved in negotiation over ecological objectives as these are pre-set in the WFD. However, stakeholders may be more involved in reviewing standards and agreeing to measures to restore river ecosystems to the status required by the WFD.
4. The U.K. has undertaken two major projects to set environmental standards for water resources (i) to define water abstraction limits that maintain a healthy river ecosystem and (ii) to define ecologically appropriate flow releases from reservoirs.
5. Implementation of environmental flows remains a major issue, but new ideas such as time-limited licences and licence trading are being tried.  相似文献   

19.
Implementation of the EU Water Framework Directive (WFD) is a huge environmental management challenge for Europe, demanding an integrated sustainable approach to water management and a common objective of obtaining ‘good status’ for all water bodies before 2015. The main task is the preparation of a river basin management plan for each of the 96 European river basin districts before the end of 2009. In Odense River Basin (island of Fyn, Denmark), one of 14 appointed European Pilot River Basins, the implementation of the WFD has been developed and tested in practice. Reference conditions and ecological status classification for Odense Fjord, based on eelgrass (Zostera marina) depth limit and nutrient concentrations, have been drawn up through a combination of historical data and modelling tools. A subsequent quantitative linking of pressures and impact, in casu between land-based nitrogen (N) loading of the fjord and resulting nutrient concentrations and eelgrass appearance, provided an estimate of the needed nitrogen load reduction of the fjord. This amounted to approx. 1,200 tonnes N per year (an annual load reduction of ca. 11 kg N ha?1 of catchment area or ca. 19.5 g N m?2 of fjord surface)—a load reduction of ca. 60% from the present level—to obtain at least ‘good’ ecological status sensu WFD. It is presently not possible to quantify a target load for phosphorus (P) in relation to marine environmental objectives. An economically feasible programme of measures to obtain ‘good’ status in all surface water and groundwater bodies in Odense River Basin, using an integrated cost-effectiveness analysis, showed that re-establishment of wetlands, catchcrops, and reduced fertilisation norms are the most effective measures if large reductions in N loads to the aquatic environment are to be achieved. The total socio-economic cost of implementing the WFD in the river basin amounts to about 13 million €/year, which will increase the expense for water services by only 0.5–0.6% of the total income and production value in the basin (15,650 million €/year). Investments to obtain the needed nitrogen load reductions from agriculture are thus economically feasible. Further, it is not an impossible task, either economically or technically, to reach the objectives of the WFD while still retaining the possibility of keeping a high agricultural production in the catchment (maintaining livestock production but decreasing crop production in the case of Odense River Basin). The future conditions in Odense Fjord will not only depend on the success in reducing the load from the river basin area, but will also be affected by the trend in the nutrient loss from the whole Baltic catchment area. The high growth rates in the new EU Member States thus pose an important challenge to water managers, and decoupling of economic growth from pressure on water bodies will be necessary. Finally, a number of challenges facing water managers around the Baltic and within the EU, namely preconditions required to successfully implement the WFD, are presented.  相似文献   

20.
The European Water Framework Directive prescribes that the development of a river assessment system should be based on an ecological typology taking the biological reference conditions of each river type as a starting point. Aside from this assessment, water managers responsible for river restoration actions also need to know the steering environmental factors to meet these reference conditions for biological communities in each ecological river type. As such, an ecological typology based on biological communities is a necessity for efficient river management. In this study, different clustering techniques including the Sørensen similarity ratio, ordination analysis and self-organizing maps were applied to come to an ecological classification of a river. For this purpose, a series of sites within the Zwalm river basin (Flanders, Belgium) were monitored. These river sites were then characterized in terms of biotic (macroinvertebrates), physical–chemical and habitat variables. The cluster analysis resulted in a series of characteristic biotic communities that are found under certain environmental conditions, natural as well as human-influenced. The use of multiple clustering techniques can be of advantage to draw more straightforward and robust conclusions with regard to the ecological classification of river sites. The application of the clustering techniques on the Zwalm river basin, allowed for distinguishing five mutually isolated clusters, characterized by their natural typology and their pollution status. On the basis of this study, one may conclude that river management could benefit from the use of clustering methods for the interpretation of large quantities of data. Furthermore, the clustering results might enable the development of a cenotypology useful for efficiently steering river restoration and enabling river managers to meet a good ecological status in most of the rivers as set by the European Water Framework Directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号