首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin H  Yan Z  Nam KH  Li J 《Molecular cell》2007,26(6):821-830
UDP-glucose:glycoprotein glucosyltransferase (UGGT) is a presumed folding sensor of protein quality control in the endoplasmic reticulum (ER). Previous biochemical studies with nonphysiological substrates revealed that UGGT can glucosylate nonnative glycoproteins by recognizing subtle folding defects; however, its physiological function remains undefined. Here, we show that mutations in the Arabidopsis EBS1 gene suppressed the growth defects of a brassinosteroid (BR) receptor mutant, bri1-9, in an allele-specific manner by restoring its BR sensitivity. Using a map-based cloning strategy, we discovered that EBS1 encodes the Arabidopsis homolog of UGGT. We demonstrated that bri1-9 is retained in the ER through interactions with several ER chaperones and that ebs1 mutations significantly reduce the stringency of the retention-based ER quality control, allowing export of the structurally imperfect yet biochemically competent bri1-9 to the cell surface for BR perception. Thus, our discovery provides genetic support for a physiological role of UGGT in high-fidelity ER quality control.  相似文献   

2.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

3.
The Htm1/EDEM protein has been proposed to act as a "degradation lectin" for endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins. In this study, we provide genetic and biochemical evidence that Yos9 protein in Saccharomyces cerevisiae is essential for efficient degradation of mutant glycoproteins. Yos9 is a member of the OS-9 protein family, which is conserved among eukaryotes and shows similarities with mannose-6-phosphate receptors (MPRs). We found that amino acids conserved among OS-9 family members and MPRs were essential for Yos9 protein function. Immunoprecipitation showed that Yos9 specifically associated with misfolded carboxypeptidase Y (CPY*), an ERAD substrate, but only when it carried Man8GlcNAc2 or Man5GlcNAc2 N-glycans. Our experiments further suggested that Yos9 acts in the same pathway as Htm1/EDEM. Yos9 protein is important for glycoprotein degradation and may act via its MRH domain as a degradation lectin-like protein in the glycoprotein degradation pathway.  相似文献   

4.
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.  相似文献   

5.
Endoplasmic reticulum–mediated quality control (ERQC) is a well-studied process in yeast and mammals that retains and disposes misfolded/unassembled polypeptides. By contrast, how plants exert quality control over their secretory proteins is less clear. Here, we report that a mutated brassinosteroid receptor, bri1-5, that carries a Cys69Tyr mutation, is retained in the ER by an overvigilant ERQC system involving three different retention mechanisms. We demonstrate that bri1-5 interacts with two ER chaperones, calnexin and binding protein (BiP), and is degraded by a proteasome-independent endoplasmic reticulum–associated degradation (ERAD). Mutations in components of the calnexin/calreticulin cycle had little effect on the fidelity of the Arabidopsis thaliana ERQC for bri1-5 retention. By contrast, overexpression of bri1-5, treatment with an ERAD inhibitor, RNA interference–mediated BiP silencing, or simultaneous mutations of Cys-69 and its partner Cys-62 can mitigate this quality control, resulting in significant suppression of the bri1-5 phenotype. Thus, bri1-5 is an excellent model protein to investigate plant ERQC/ERAD in a model organism.  相似文献   

6.
A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD.  相似文献   

7.
Benitez EM  Stolz A  Wolf DH 《FEBS letters》2011,585(19):3015-3019
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY?. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY?0000. It decelerates its degradation rate.  相似文献   

8.
9.
Denic V  Quan EM  Weissman JS 《Cell》2006,126(2):349-359
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.  相似文献   

10.
Proteins that fail to fold or assemble with partner subunits are selectively removed from the endoplasmic reticulum (ER) via the ER-associated degradation (ERAD) pathway. Proteins selected for ERAD are polyubiquitinated and retrotranslocated into the cytosol for degradation by the proteasome. Although it is unclear how proteins are initially identified by the ERAD system in mammalian cells, OS-9 was recently proposed to play a key role in this process. Here we show that OS-9 is upregulated in response to ER stress and is associated both with components of the ERAD machinery and with ERAD substrates. Using RNA interference, we show that OS-9 is required for efficient ubquitination of glycosylated ERAD substrates, suggesting that it helps transfer misfolded proteins to the ubiquitination machinery. We also find that OS-9 binds to a misfolded nonglycosylated protein destined for ERAD, but not to the properly folded wild-type protein. Surprisingly, however, OS-9 is not required for ubiquitination or degradation of this nonglycosylated ERAD substrate. We propose a model in which OS-9 recognises terminally misfolded proteins via polypeptide-based rather than glycan-based signals, but is only required for transferring those bearing N-glycans to the ubiquitination machinery.  相似文献   

11.
Cui F  Liu L  Zhao Q  Zhang Z  Li Q  Lin B  Wu Y  Tang S  Xie Q 《The Plant cell》2012,24(1):233-244
Plants modify their growth and development to protect themselves from detrimental conditions by triggering a variety of signaling pathways, including the activation of the ubiquitin-mediated protein degradation pathway. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important aspect of the ubiquitin-proteasome system, but only a few of the active ERAD components have been reported in plants. Here, we report that the Arabidopsis thaliana ubiquitin-conjugating enzyme, UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2) localized to the ER membrane, connects the ERAD process and brassinosteroid (BR)-mediated growth promotion and salt stress tolerance. In vivo data showed that UBC32 was a functional ERAD component that affected the stability of a known ERAD substrate, the barley (Hordeum vulgare) powdery mildew O (MLO) mutant MLO-12. UBC32 mutation caused the accumulation of bri1-5 and bri1-9, the mutant forms of the BR receptor, BRI1, and these mutant forms subsequently activated BR signal transduction. Further genetic and physiological data supported the contention that UBC32 plays a role in the BR-mediated salt stress response and that BR signaling is necessary for the plant to tolerate salt. Our data indicates a possible mechanism by which an ERAD component regulates the growth and stress response of plants.  相似文献   

12.
The OS-9 gene maps to a region (q13-15) of chromosome 12 that is highly amplified in human osteosarcomas and encodes a protein of unknown function. Here we have characterized a homolog designated as YOS9 (YDR057w) from Saccharomyces cerevisiae. The yeast protein (Yos9) is a membrane-associated glycoprotein that localizes to the endoplasmic reticulum (ER). YOS9 interacts genetically with genes involved in ER-Golgi transport, particularly SEC34, whose temperature-sensitive mutant is rescued by YOS9 overexpression. Interestingly, Yos9 appears to play a direct role in the transport of glycosylphosphatidylinositol (GPI)-anchored proteins to the Golgi apparatus. Yos9 binds directly to Gas1 and Mkc7 and accelerates Gas1 transport and processing in cells overexpressing YOS9. Correspondingly, Gas1 processing is slowed in cells bearing a deletion in YOS9. No effect upon the transport and processing of non-GPI-anchored proteins (e.g. invertase and carboxypeptidase Y) was detected in cells either lacking or overexpressing Yos9. As Yos9 is not a component of the Emp24 complex, it may act as a novel escort factor for GPI-anchored proteins in ER-Golgi transport in yeast and possibly in mammals.  相似文献   

13.
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.  相似文献   

14.
Sophisticated quality control mechanisms prolong retention of protein-folding intermediates in the endoplasmic reticulum (ER) until maturation while sorting out terminally misfolded polypeptides for ER-associated degradation (ERAD). The presence of structural lesions in the luminal, transmembrane, or cytosolic domains determines the classification of misfolded polypeptides as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. In this study, we show that disposal of soluble (nontransmembrane) polypeptides with luminal lesions (ERAD-LS substrates) is strictly dependent on the E3 ubiquitin ligase HRD1, the associated cargo receptor SEL1L, and two interchangeable ERAD lectins, OS-9 and XTP3-B. These ERAD factors become dispensable for degradation of the same polypeptides when membrane tethered (ERAD-LM substrates). Our data reveal that, in contrast to budding yeast, tethering of mammalian ERAD-L substrates to the membrane changes selection of the degradation pathway.  相似文献   

15.
ER-associated degradation (ERAD) of glycoproteins depends on dual recognition of protein misfolding and remodeling of the substrate's N-linked glycans. After recognition, substrates are retrotranslocated to the cytosol for proteasomal degradation. To explore the directionality of this process, we fused a highly stable protein, DHFR, to the N or C terminus of the soluble ERAD substrate CPY* in yeast. Degradation of the C-terminal CPY*-DHFR fusion is markedly slowed and is accompanied by DHFR release in the ER lumen. Thus, folded lumenal domains can impede protein retrotranslocation. The ER lumenal protein Yos9p is required for both release of DHFR and degradation of multiple ERAD substrates. Yos9p forms a complex with substrates and has a sugar binding pocket that is essential for its ERAD function. Nonetheless, substrate recognition persists even when the sugar binding site is mutated or CPY* is unglycosylated. These and other considerations suggest that Yos9p plays a critical role in the bipartite recognition of terminally misfolded glycoproteins.  相似文献   

16.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

17.
Carvalho P  Goder V  Rapoport TA 《Cell》2006,126(2):361-373
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.  相似文献   

18.
Several regulators of endoplasmic reticulum (ER)-associated degradation (ERAD) have a shorter half-life compared to conventional ER chaperones. At steady state, they are selectively removed from the ER by poorly defined events collectively referred to as ERAD tuning. Here we identify the complex comprising the type-I transmembrane protein SEL1L and the cytosolic protein LC3-I as an ERAD tuning receptor regulating the COPII-independent, vesicle-mediated removal of the lumenal ERAD regulators EDEM1 and OS-9 from the ER. Expression of?folding-defective polypeptides enhances the lumenal content of EDEM1 and OS-9 by inhibiting their SEL1L:LC3-I-mediated segregation. This raises ERAD activity in the absence of UPR-induction. The mouse hepatitis virus (MHV) subverts ERAD tuning for replication. Consistently, SEL1L or LC3 silencing impair the MHV life cycle. Collectively, our data provide new molecular information about the ERAD tuning mechanisms that regulate ERAD in mammalian cells at the post translational level and how these mechanisms are hijacked by a pathogen.  相似文献   

19.
20.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号