首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.  相似文献   

3.
Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5′ untranslated region (5′ UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5′ UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl2, up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5′ UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed.  相似文献   

4.
5.
6.
7.
8.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential scaffolding protein required to recruit the 43 S complex to the 5'-end of mRNA during translation initiation. We have previously demonstrated that eIF4GI protein expression is translationally regulated. This regulation is mediated by cis-acting RNA elements, including an upstream open reading frame and an IRES that directs synthesis of five eIF4GI protein isoforms via alternative AUG initiation codon selection. Here, we further characterize eIF4GI IRES function and show that eIF4GI is expressed from several distinct mRNAs that vary via alternate promoter use and alternate splicing. Several mRNA variants contain the IRES element. We found that IRES activity mapped to multiple regions within the eIF4GI RNA sequence, but not within the 5'-UTR per se. However, the 5'-UTR enhanced IRES activity in vivo and played a role in initiation codon selection. The eIF4GI IRES was active when transfected into cells in an RNA form, and thus, does not require nuclear processing events for its function. However, IRES activity was found to be dependent upon the presence, in cis, of a 5' m7guanosine-cap. Despite this requirement, the eIF4GI IRES was activated by 2A protease cleavage of eIF4GI, in vitro, and retained the ability to promote translation during poliovirus-mediated inhibition of cap-dependent translation. These data indicate that intact eIF4GI protein is not required for the de novo synthesis of eIF4GI, suggesting its expression can continue under stress or infection conditions where eIF4GI is cleaved.  相似文献   

9.
10.
11.
The rate-limiting step in the de novo synthesis of the cellular protectant glutathione is catalyzed by gamma-glutamylcysteine synthetase (GCS; also known as glutamine-L-cysteine ligase, GLCL), a heterodimer consisting of catalytic (GCS(h)) and regulatory (GCS(l)) subunits. Regulation of expression of the human gamma-glutamylcysteine synthetase regulatory subunit gene in response to beta-NF is mediated by an Electrophile Responsive Element (EpRE) [Moinova, H., and Mulcahy, R. T. (1998) J. Biol. Chem. 273, 14683-14689]. Oligonucleotide probes corresponding to wild-type and mutant EpRE sequences were used in gel-shift and super-shift analyses to identify proteins binding. Four protein:DNA complexes (a-d) with distinct mobilities were detected when the wild-type EpRE probe was incubated with nuclear extracts from control or beta-NF-treated HepG2 cells. Following beta-NF treatment, there was an increase in the intensity of a single band, band b. This band was eliminated in gel shifts employing mutant EpRE probes which abolish beta-NF inducibility, demonstrating a correlation between band b and transactivation. Super-shift analysis identified JunD, Nrf1, and Nrf2 in the EpRE-binding complexes. Antibodies to Nrf2 completely super-shifted the band b protein:DNA complex. These studies demonstrate that Nrf2 proteins recognize and bind the GCS(l) EpRE sequence to affect transactivation of the gene.  相似文献   

12.
As the first identified N6-methyladenosine (m6A) demethylase, fat mass and obesity-associated (FTO) protein is associated with fatty acid synthase (FASN) and lipid accumulation. However, little is known about the regulatory role of FTO in the expression of FASN and de novo lipogenesis through m6A modification. In this study, we used FTO small interfering RNA to explore the effects of FTO knockdown on hepatic lipogenesis and its underlying epigenetic mechanism in HepG2 cells. We found that knockdown of FTO increased m6A levels in total RNA and enhanced the expression of YTH domain family member 2 which serves as the m6A-binding protein. The de novo lipogenic enzymes and intracellular lipid content were significantly decreased under FTO knockdown. Mechanistically, knockdown of FTO dramatically enhanced m6A levels in FASN messenger RNA (mRNA), leading to the reduced expression of FASN mRNA through m6A-mediated mRNA decay. The protein expressions of FASN along with acetyl CoA carboxylase and ATP-citrate lyase were further decreased, which inhibited de novo lipogenesis, thereby resulting in the deficiency of lipid accumulation in HepG2 cells and the induction of cellular apoptosis. The results reveal that FTO regulates hepatic lipogenesis via FTO-dependent m6A demethylation in FASN mRNA and indicate the critical role of FTO-mediated lipid metabolism in the survival of HepG2 cells. This study provides novel insights into a unique RNA epigenetic mechanism by which FTO mediates hepatic lipid accumulation through m6A modification and indicates that FTO could be a potential target for obesity-related diseases and cancer.  相似文献   

13.
The cytotoxic effects of several chemotherapeutic drugs have been linked to elevated de novo ceramide biosynthesis. However, the relationship between the intracellular site(s) of ceramide accumulation and cytotoxicity is poorly understood. Here we examined the relationship between the site of ceramide deposition and inhibition of protein translation and induction of apoptosis by the antitumor/antiviral xanthate, D609. In Chinese hamster ovary (CHO)-K1, HEK-293, and NIH-3T3 cells, D609 caused rapid (1-5 min) and sustained eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation followed by apoptosis after 24 h. Concurrently, D609 stimulated de novo ceramide synthesis and increased ceramide mass 2-fold by 2 h in CHO-K1 cells. In D609-treated CHO-K1 cells, sphingomyelin synthesis was stimulated by brefeldin A, and C5-DMB-ceramide transport to the Golgi apparatus was blocked, indicating ceramide accumulation in the endoplasmic reticulum (ER). However, D609-mediated eIF2alpha phosphorylation, inhibition of protein synthesis, and apoptosis in CHO-K1 cells were not attenuated by fumonisin B1 or l-cycloserine. Interestingly, short-chain ceramide promoted eIF2alpha phosphorylation and inhibited protein synthesis in CHO-K1 cells, indicating that the effectiveness of endogenous ceramide could be limited by access to signaling pathways. Thus, expansion of the ER ceramide pool by D609 was not implicated in early (eIF2alpha phosphorylation) or late (apoptotic) cytotoxic events.  相似文献   

14.
15.
16.
17.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism.  相似文献   

18.
Maize heat shock protein of 101 KDa (HSP101) is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5′UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5′UTR sequence (150 nts), since deletion of 17 nucleotides from the 5′ end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5′ end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号