首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据患者的临床体征以及家系的遗传方式,文章对一个中国汉族皮肤和粘膜多发静脉血管畸形(Mucocutaneous venous malformations,VMCM)家系进行了临床诊断。家系中连续5代都有患者,男女患者比例约1:1,为常染色体显性遗传方式。患者皮肤、口腔粘膜、舌头以及四肢等处可见蓝紫色、突出皮面、质硬、压之不褪色的瘤体,组织病理学显示,静脉血管的管腔极不规则,部分管壁存在缺失,部分管壁明显增厚。患者无消化道出血史,无心脏和脑部异常,临床诊断为VMCM。为了进行致病基因的定位和单倍型分析,采集了家族中26人的外周血并提取基因组DNA,并设计微卫星引物进行了连锁和单倍型分析。两点间连锁分析的结果表明,在D9S1121处有最大LOD值为Z=5.38(θ=0.00),单倍型分析的结果提示,致病基因定位于9号染色体短臂上D9S1121和D9S161之间约7 cM的范围内。文章首次报道了中国汉族VMCM家系,其致病基因定位定位于9p,与已报道的欧洲家系相同。用4个微卫星标记D9S1121、D9S 169、D9S161和D9S248确定了该家系致病基因的单倍型,为不同种族和人群VMCM疾病相关研究提供参考。  相似文献   

2.
Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1–12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64–133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists.  相似文献   

3.
Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q.   总被引:20,自引:1,他引:19  
Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-onset primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C.  相似文献   

4.
Li H  Wang JX  Wang CY  Yu P  Zhou Q  Chen YG  Zhao LH  Zhang YP 《Human genetics》2008,122(6):589-593
Microphthalmia is a clinically and genetically heterogeneous disorder of eye development. The genetic basis of nonsyndromic microphthalmia is not yet fully understood. Previous studies indicated that disease pedigrees from different genetic backgrounds could be attributed to completely different gene loci. To investigate the etiology in a large autosomal-dominant inherited simple microphthalmia (nanophthalmia) pedigree, which is the first genetically analyzed Chinese microphthalmia pedigree, we performed a whole-genome scan using 382 micro-satellite DNA markers after the exclusion of reported candidates associated with microphthalmia. Strong evidence indicated that microphthalmia in this family was mapped to an unreported new locus on chromosome 2q. A significantly positive two-point LOD score was obtained with a maximum 3.290 at a recombination fraction of 0.00 for marker D2S2265. Subsequent haplotype analysis and recombination data further confined the disease-causing gene to a 15-cM interval between D2S1890 and D2S347 on 2q11-14. Our results further underlined the degree of heterogeneity in microphthalmia from Chinese background and localized a novel gene which regulates eye embryogenesis.  相似文献   

5.
Cystinuria is a genetic disease manifested by the development of kidney stones. In some patients, the disease is caused by mutations in the SLC3A1 gene located on chromosome 2p. In others, the disease is caused by a gene that maps to chromosome 19q, but has not yet been cloned. Cystinuria is very common among Jews of Libyan ancestry living in Israel. Previously we have shown that the disease-causing gene in Libyan Jews maps to an 8-cM interval on chromosome 19q between the markers D19S409 and D19S208. Several markers from chromosome 19q showed strong linkage disequilibrium, and a specific haplotype was found in more than half of the carrier chromosomes. In this study we have analyzed Libyan Jewish cystinuria families with eight markers from within the interval containing the gene. Seven of these markers showed significant linkage disequilibrium. A common haplotype was found in 16 of the 17 carrier chromosomes. Analysis of historical recombinants placed the gene in a 1.8-Mb interval between the markers D19S430 and D19S874. Two segments of the historical carrier chromosome used to calculate the mutation's age revealed that the disease-causing mutation was introduced into this population 7-16 generations ago.  相似文献   

6.
Wang CL  Liang L  Shen Z  Zou CC  Fu JF  Dong GP 《Genomics》2011,(6):440-444
Genetic mutations have been identified in a modest proportion of patients with combined pituitary hormone deficiency (CPHD). We reported a 3-generation family consisting of 18 members, including 5 affected males (the proband, his 2 brothers, his cousin, and his maternal uncle; III1–III4, II8) suffered with CPHD. MRI of the pituitary gland showed hypoplasia of the pituitary gland in affected members. By 19 STR markers and linkage analysis, we found that the disease gene localized between the DXS987 and DXS1226 markers (LOD score = 2.408, θ = 0). All affected male patients inherited the same haplotype from the female carrier (I4). The proband's mother (II4) and her sister (II3, II6) were obligate female carriers. However, the unaffected males (II7, II9) in the family did not have this haplotype. These observations confirm a new X-linked recessive inherited disease in a Chinese family with CPHD and the pathogenic gene is mapped to Xp22.1–Xp11.  相似文献   

7.
Fukuyama-type congenital muscular dystrophy (FCMD) is an autosomal recessive, severe muscular dystrophy associated with brain anomalies. After our initial mapping of the FCMD locus to 9q31–33, we performed linkage disequilibrium analysis, which led us to suspect that the FCMD gene lay within a region of less than 100 kb containing D9S2107. In the present study, we developed two new microsatellites (D9S2170 and D9S2171) in close vicinity to D9S2107 and examined haplotypes of FCMD chromosomes by using four markers (cen-D9S2105-D9S2170-D9S2171-D9S2107-tel). As 82% of the FCMD chromosomes that we examined shared the founder haplotype (138–192–147–183) and 94% of the FCMD patients in our panel carried founder haplotypes on one or both chromosomes, the data supported the hypothesis of a single founder of this disease in the Japanese population. Eight haplotypes different from the founder’s were observed in FCMD chromosomes, indicating that eight different FCMD mutations in addition to the founder’s have occurred in Japan. Moreover, we have detected several historical recombinations that have disrupted the founder haplotype at D9S2105 or D9S2170 and conclude that the FCMD gene is probably located just centromeric to D9S2170. Received: 16 May 1998 / Accepted: 10 June 1998  相似文献   

8.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of severe inherited childhood deafness. We present the linkage analysis of two inbred Bedouin kindreds from Israel that are affected with ARNSHL. A rapid genomewide screen for markers linked to the disease was performed by using pooled DNA samples. This screen revealed evidence for linkage with markers D9S922 and D9S301 on chromosome 9q. Genotyping of individuals from both kindreds confirmed linkage to chromosome 9q and a maximum combined LOD score of 26.2 (recombination fraction [theta] .025) with marker D9S927. The disease locus was mapped to a 1.6-cM region of chromosome 9ql3-q2l, between markers D9S15 and D9S927. The disease segregates with a common haplotype in the two kindreds, at markers D9S927, D9S175, and D9S284 in the linked interval, supporting the hypothesis that both kindreds inherited the deafness gene from a common ancestor. Although this nonsyndromic-hearing-loss (NSHL) locus maps to the same cytogenetic interval as DFNB7, it does not overlap the currently defined DFNB7 interval and may represent (1) a novel form of NSHL in close proximity to DFNB7 or (2) a relocalization of the DFNB7 interval to a region telomeric to its reported location. This study further demonstrates that DNA pooling is an effective means of quickly identifying regions of linkage in inbred families with heterogeneous autosomal recessive disorders.  相似文献   

9.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, a birdlike face, growth retardation, immunodeficiency, lack of secondary sex characteristics in females, and increased incidence of lymphoid cancers. NBS cells display a phenotype similar to that of cells from ataxia-telangiectasia patients, including chromosomal instability, radiation sensitivity, and aberrant cell-cycle-checkpoint control following exposure to ionizing radiation. A recent study reported genetic linkage of NBS to human chromosome 8q21, with strong linkage disequilibrium detected at marker D8S1811 in eastern European NBS families. We collected a geographically diverse group of NBS families and tested them for linkage, using an expanded panel of markers at 8q21. In this article, we report linkage of NBS to 8q21 in 6/7 of these families, with a maximum LOD score of 3.58. Significant linkage disequilibrium was detected for 8/13 markers tested in the 8q21 region, including D8S1811. In order to further localize the gene for NBS, we generated a radiation-hybrid map of markers at 8q21 and constructed haplotypes based on this map. Examination of disease haplotypes segregating in 11 NBS pedigrees revealed recombination events that place the NBS gene between D8S1757 and D8S270. A common founder haplotype was present on 15/18 disease chromosomes from 9/11 NBS families. Inferred (ancestral) recombination events involving this common haplotype suggest that NBS can be localized further, to an interval flanked by markers D8S273 and D8S88.  相似文献   

10.
Congenital dyserythropoietic anemias (CDA) are a rare group of red-blood-cell disorders of unknown etiology that are characterized by ineffective erythropoiesis, pathognomonic cytopathology of the nucleated red blood cells in the bone marrow, and secondary hemochromatosis. In CDA type I, bone-marrow electron microscopy reveals characteristic findings in erythroid precursors, including spongy heterochromatin and enlarged nuclear pores. Since the genetic basis of CDA type I is not evident, we used homozygosity and linkage mapping to localize the genetic defect responsible for CDA type I in 25 Bedouins from four large consanguineous families. We report the linkage of this disease to markers on chromosome 15 located at q15. 1-q15.3. Fourteen markers within a 12-cM interval were typed in the relevant family members. Nine of the markers yielded maximum LOD scores of 1.625-12.928 at a recombination fraction of .00. Linkage disequilibrium was found only with marker D15S779. Haplotype analysis revealed eight different carrier haplotypes and highlighted the existence of a founder haplotype. Identification of historical crossover events further narrowed the gene location to between D15S779 and D15S778. The data suggest localization of the CDA type I gene within a 0.5-cM interval. The founder mutation probably occurred >/= 400 years ago. Sequence analysis of the coding region of protein 4.2, the only known erythroid-specific gene in the locus, did not reveal any change in the CDA type I patients. Future analysis of this locus may lead to the identification of a gene essential to normal erythropoiesis.  相似文献   

11.
Cystinuria is a hereditary disorder of amino acid transport and is manifested by the development of kidney stones. In some patients the disease is caused by mutations in the SLC3A1 gene, which is located on the short arm of chromosome 2 and encodes a renal/intestinal transporter for cystine and the dibasic amino acids. In Israel cystinuria is especially common among Jews of Libyan origin. After excluding SLC3A1 as the disease-causing gene in Libyan Jewish patients, we performed a genomewide search that shows that the Libyan Jewish cystinuria gene maps to the long arm of chromosome 19. Significant linkage was obtained for seven chromosome 19 markers. A maximal LOD score of 9.22 was obtained with the marker D19S882. Multipoint data and recombination analysis placed the gene in an 8-cM interval between the markers D19S409 and D19S208. Significant linkage disequilibrium was observed for alleles of four markers, and a specific haplotype comprising the markers D19S225, D19S208, D19S220, and D19S422 was found in 11 of 17 carrier chromosomes, versus 1 of 58 Libyan Jewish noncarrier chromosomes.  相似文献   

12.
One of the world highest prevalence estimates of myotonic dystrophy (DM) has been reported in the Croatian region Istria. To analyse the population genetic characteristics of DM locus in Istria, two intragenic and three extragenic polymorphic markers were tested. The Southern blot technique was used for D19S63 locus analysis, whereas PCR analysis was performed for CKMM, Alu polymorphism, DMPK (G/T) intron 9/HinfI polymorphism, and D19S207 genetic markers. The compound haplotypes segregating with DM were established. A complete association between the DM mutation and D19S63, D19S207, intron 9/HinfI polymorphism and Alu polymorphism markers were found. In all DM chromosomes: D19S63 and Alu markers had the allele 1 in common; D19S207 had the allele 3 in common, DMPK (G/T) intron 9/HinfI marker had the allele 2 in common. The analysis of CKMM polymorphism revealed genotype heterogeneity; in DM chromosomes either allele 2 or allele 4 were found. The haplotype analysis in the population of Croatian Istria supports the linkage disequilibrium between the DM mutation and Alu polymorphism, intron 9/HinfI polymorphism, D19S63 and D19S207 markers as reported worldwide. The results of the haplotype analysis suggest a common origin of the mutation in Istrian population.  相似文献   

13.
Dai XH  Chen WW  Wang X  Zhu QH  Li C  Li L  Liu MG  Wang QK  Liu JY 《Human genetics》2008,124(4):423-429
Febrile seizures (FS) are common in children, and the incidence is 2–5% before the age of 5 years. A four-generation Chinese family with autosomal dominant febrile seizure and epilepsy was studied by genome-wide linkage analysis. Significant linkage was identified with markers on chromosome 3q26.2–26.33 with a maximum pairwise LOD score of >3.00. Fine mapping defined the new genetic locus within a 10.7-Mb region between markers D3S3656 and D3S1232. A maximum multipoint LOD score of 5.27 was detected at marker D3S1565. A previously reported CLCN2 gene for epilepsy was excluded as the disease-causing gene in the family by mutational analysis of all exons and exon–intron boundaries of CLCN2 and by haplotype analysis. Mutation analysis of KCNMB2 and KCNMB3, which were two potassium-channel genes in this linkage region, did not reveal a disease causing mutation. Our results identified another novel locus on chromosome 3q26.2–26.33, and future studies of the candidate genes at the locus will identify a new gene for combined FS and idiopathic epilepsies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. X.-H. Dai, W.-W. Chen, and X. Wang contributed equally to this work.  相似文献   

14.
Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at theta = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene.  相似文献   

15.
The gene for autosomal, dominantly inherited, non-chromaffin paragangliomas has previously been mapped at 11q23-qter by linkage analysis of a single family. In the present study, we have used genetic markers from 11q for the analysis of two distantly related pedigrees with the same disorder. Linkage analysis and haplotyping indicate that the gene underlying the disorder in the present family is located on chromosome 11q proximal to the tyrosinase gene locus (11q14–q21). Closely linked markers are the human homologue of the murine INT2 protooncogene and the anonymous DNA marker D11S527. A maximum lod score of 5.4 (=0.0) has been obtained for linkage between the disorder and the chromosomal region defined by these markers. The human INT2 gene can be regarded as a candidate for the disorder on the basis of its expression pattern during embryogenesis in the mouse. However, haplotype analysis indicates that this gene is probably not the predisposing genetic factor in the present family.  相似文献   

16.
Duane's syndrome is a congenital abnormality of eye movement, which may be inherited as an autosomal dominant trait but usually occurs sporadically. Genetic mapping in a Mexican family has recently identified a locus for Duane's syndrome within a 17.8-cM region of chromosome 2q31. The region was flanked by the microsatellite markers D2S2330 and D2S364. We performed linkage and haplotype analysis in a four-generation UK family with autosomal dominant transmission of Duane's syndrome. Linkage to 2q31 was confirmed with a maximum logarithm of differences (lod) score of 3.3 at theta = 0. The genetic interval was reduced to an 8.8-cM region between markers D2S326 and D2S364 that includes the candidate homeobox D gene cluster.  相似文献   

17.
Hereditary sensory neuropathy type I (HSN I) is a group of dominantly inherited degenerative disorders of peripheral nerve in which sensory features are more prominent than motor involvement. We have described a new form of HSN I that is associated with cough and gastroesophageal reflux. To map the chromosomal location of the gene causing the disorder, a 10-cM genome screen was undertaken in a large Australian family. Two-point analysis showed linkage to chromosome 3p22-p24 (Zmax=3.51 at recombination fraction (theta) 0.0 for marker D3S2338). A second family with a similar phenotype shares a different disease haplotype but segregates at the same locus. Extended haplotype analysis has refined the region to a 3.42-cM interval, flanked by markers D3S2336 and D3S1266.  相似文献   

18.
In an effort to localize a gene for ataxia-telangiectasia (A-T), we have genotyped 27 affected Costa Rican families, with 13 markers, in the chromosome 11q22-23 region. Significant linkage disequilibrium was detected for 9/13 markers between D11S1816 and D11S1391. Recombination events observed in these pedigrees places A-T between D11S1819 and D11S1960. One ancestral haplotype is common to 24/54 affected chromosomes and roughly two-thirds of the families. Inferred (ancestral) recombination events involving this common haplotype in earlier generations suggest that A-T is distal to D11S384 and proximal to D11S1960. Several other common haplotypes were identified, consistent with multiple mutations in a single gene. When considered together with all other evidence, this study further sublocalizes the major A-T locus to ≈200 kb, between markers S384 and S535.  相似文献   

19.
Otosclerosis is a common disorder of the otic capsule resulting in hearing impairment in 0.3–0.4% of the Caucasian population. The aetiology of the disease remains unclear. In most cases, otosclerosis can be considered as a complex disease. In some cases, the disease is inherited as an autosomal dominant trait, sometimes with reduced penetrance. To date, seven autosomal dominant loci have been reported, but none of the disease-causing genes has been identified. In this study, we present the results of a genome-wide linkage analysis in a large Tunisian family segregating autosomal dominant otosclerosis. Linkage analysis localised the responsible gene to chromosome 9p13.1-9q21.11 with a maximal LOD score of 4.13, and this locus was named OTSC8. Using newly generated short tandem repeat polymorphism markers, we mapped this new otosclerosis locus to a 34.16 Mb interval between the markers D9S970 and D9S1799. This region comprises the pericentromeric region on both arms of chromosome 9, a highly complex region containing many duplicated sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The putative locus for hereditary mixed polyposis syndrome (HMPS) in a large family of Ashkenazi descent (SM96) was previously reported to map to chromosome sub-bands 6q16-q21. However, new clinical data, together with molecular data from additional family members, have shown 6q linkage to be incorrect. A high-density genomewide screen for the HMPS gene was therefore performed on SM96, using stringent criteria for assignment of affection status to minimize phenocopy rates. Significant evidence of linkage was found only on a region on chromosome 15q13-q14. Since this region encompassed CRAC1, a locus involved in inherited susceptibility to colorectal adenomas and carcinomas in another Ashkenazi family (SM1311), we determined whether HMPS and CRAC1 might be the same. We found that affected individuals from both families shared a haplotype between D15S1031 and D15S118; the haplotype was rare in the general Ashkenazi population. A third informative family, SM2952, showed linkage of disease to HMPS/CRAC1 and shared the putative ancestral haplotype, as did a further two families, SMU and RF. Although there are probably multiple causes of the multiple colorectal adenoma and cancer phenotype in Ashkenazim, an important one is the HMPS/CRAC1 locus on 15q13-q14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号