首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.  相似文献   

2.
Pectin, one of the main components of plant cell wall, is secreted in a highly methylesterified form and is demethylesterified in muro by pectin methylesterase (PME). The action of PME is important in plant development and defense and makes pectin susceptible to hydrolysis by enzymes such as endopolygalacturonases. Regulation of PME activity by specific protein inhibitors (PMEIs) can, therefore, play a role in plant development as well as in defense by influencing the susceptibility of the wall to microbial endopolygalacturonases. To test this hypothesis, we have constitutively expressed the genes AtPMEI-1 and AtPMEI-2 in Arabidopsis (Arabidopsis thaliana) and targeted the proteins into the apoplast. The overexpression of the inhibitors resulted in a decrease of PME activity in transgenic plants, and two PME isoforms were identified that interacted with both inhibitors. While the content of uronic acids in transformed plants was not significantly different from that of wild type, the degree of pectin methylesterification was increased by about 16%. Moreover, differences in the fine structure of pectins of transformed plants were observed by enzymatic fingerprinting. Transformed plants showed a slight but significant increase in root length and were more resistant to the necrotrophic fungus Botrytis cinerea. The reduced symptoms caused by the fungus on transgenic plants were related to its impaired ability to grow on methylesterified pectins.  相似文献   

3.
An Arabidopsis thaliana pectin methylesterase that was not predicted to contain any signaling sequence was produced in E. coli and purified using a His tag added at its N-terminus. The enzyme demethylesterified Citrus pectin with a Km of 0.86 mg/ml. The enzyme did not require salt for activity and was found to be relatively temperature-sensitive. The precipitation of enzyme-treated pectin by CaCl2 suggested that the enzyme had a blockwise mode of pectin demethylesterification. A purified kiwi (Actinidia chinensis) pectin methylesterase inhibitor had no effect on the activity of the enzyme whereas it strongly inhibited a flax pectin methylesterase. A model of the protein structure revealed that an extra amino acid sequence in this particular Arabidopsis pectin methylesterase could form a ss-strand outside the core structure, which might be preventing the inhibitor from binding the protein.  相似文献   

4.
High methoxy pectin was submitted to various amounts of a fungal pectin methylesterase (PME) from Aspergillus aculeatus and of a plant PME from orange in the presence of calcium. The systems were characterized by rheological means during the gelation process. By the way of in situ demethoxylation with low amount of orange PME, it was possible to gel pectin from the beginning of the reaction although its high degree of methylation around 70. To understand this unusual properties, the behaviour of the two enzymes was investigated in pectic gels and in solution through the analysis of content and distribution of the remaining methyl esters. In the gel, the degree of methylation decreased slowly with orange PME and rapidly with Aspergillus PME. The degree of methylation and degree of blockiness after treatment with each PME in solution or in gels were slightly different. Possible explanations for this are evolving visco-elastic properties, including gel formation or influence of calcium on the enzyme–substrate complex.  相似文献   

5.
The kinetic behavior during gel formation and the microstructure of 0.75% high methoxyl (HM) pectin gels in 60% sucrose have been investigated by oscillatory measurements and transmission electron microscopy for three comparable citrus pectin samples differing in their degree of blockiness (DB). Ca2+ addition at pH 3.0 resulted in faster gel formation and a lower storage modulus after 3 h for gels of the blockwise pectin A. For gels of the randomly esterified pectin B, the Ca2+ addition resulted in faster gel formation and a higher storage modulus at pH 3.0. At pH 3.5, both pectins A and B were reinforced by the addition of Ca2+. In the absence of Ca2+, the shortest gelation time was obtained for the sample with the highest DB. Microstructural characterization of the gel network, 4 and 20 h after gel preparation, showed no visible changes on a nanometer scale. The microstructure of pectins A and B without Ca2+ was similar, whereas the presence of Ca2+ in pectin A resulted in an inhomogeneous structure.  相似文献   

6.
采用免疫荧光标记技术,利用5种识别不同甲酯化程度聚半乳糖醛酸(HGs)果胶及香蕉果胶甲酯酶(PME)的单克隆抗体,对不同株龄香蕉叶片中PME及不同甲酯化程度的HGs定位、相对含量以及PME活性的变化进行分析,为探讨HGs和PME在香蕉生长发育及抵抗逆境过程中的功能和生理机制奠定基础。结果显示:(1)PME主要在组培苗的叶肉和保卫细胞中表达,其表达量及其酶的活性均随着香蕉株龄的增长而呈现下降趋势。(2)叶肉细胞也是各类不同甲酯化程度HGs的主要分布区域,其含量随着香蕉株龄的增长有不同程度的下降,但不同HGs在叶肉细胞中的含量以及在表皮、保卫细胞及叶脉中的分布模式不尽相同,保卫细胞中HGs的甲酯化程度较高。研究表明,香蕉的叶肉细胞是PME及这5种不同甲酯化程度HGs的主要分布场所,且这些HGs在香蕉发育过程中的含量变化趋势与PME相似。  相似文献   

7.
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.  相似文献   

8.
The gelling properties of pectins are known to be closely related to the degree of methylation (DM) and the distribution of the ester groups. In order to investigate this dependency, a natural citrus pectin (DM 64%) has been methylated to pectins with higher DM or saponified to achieve pectins with lower DM. A simple method for determination of DM by 1H NMR spectroscopy is presented. New modified pectins have been prepared by treatment of pectins having different DM with NaBH(4) to reduce selectively the methyl esters to primary alcohols in the presence of free acids. The degree of reduction (DR) and the DM of the remaining carboxylic acids could likewise be determined by 1H NMR spectroscopy. The new reduced pectins are recognized by the pectin degrading enzymes polygalacturonase PGI and PGII as well as by pectin lyase, all from Aspergillus niger, but the enzymes exhibit lower specific activities as compared with unmodified pectin. The new reduced pectins exhibit high gelling properties.  相似文献   

9.
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.  相似文献   

10.
Two series of pectins with different levels and patterns of methyl esterification were produced by treatment of a very highly methylated lime pectin with a fungus- or plant-pectin methylesterase. The interchain distribution of free carboxyl groups was investigated by size exclusion and ion exchange chromatography. "Homogeneous" populations with respect to molar mass or charge density were thereby obtained, and their composition, molar mass, and calcium binding properties were investigated. The composition varies from one size exclusion chromatography fraction to another, the highest molar mass fraction being richer in rhamnogalacturonic sequences and exhibiting a slightly higher degree of methylation (DM). Separation of pectins by ion exchange chromatography revealed a narrow charge density distribution for pectins deesterified by fungus-pectin methylesterase, in agreement with a multichain mechanism. Conversely, pectins deesterified by plant-pectin methylesterase exhibited a very large charge density distribution suggesting a processive mechanism. The interchain polydispersity with regard to DM was however shown to have no impact on calcium binding properties of the different fractions. The progressive dimerization through calcium ions with decreasing DM of pectins deesterified by plant-pectin methylesterase seems to be the result of a peculiar intrachain pattern of methyl esterification that can be attributed to a multiple attack mechanism.  相似文献   

11.
《农业工程》2022,42(5):520-528
Homegardens (HGs) are dynamic agroforestry systems that ensure food and nutritional security and environmental protection. In northeast India where shifting cultivation (SC) is still prevailing in large scale, HGs offer a viable solution to SC, however, there is limited information on the potential of these systems to improve the landscape, meet the households' daily requirements. Forty two HGs were surveyed to study species diversity, their variation across developmental stages (age), and ability to provide resilience to food shortage and health. The results showed that all HGs irrespective of their age are biodiverse-rich systems showing diversity (H) from 3.765 to 4.245 (tree), 2.803 to 3.65 (shrub), and 3.13 to 3.925 (herb). A higher proportion of species was found occupied height > 6 m at old HG (OHG) while in young HG (YHG) major proportion of species were at low height (0–1 m). Though the species diversity showed weak relationship with HG age, association of diverse species was as per the household requirements. Based on the structure and function six HG groups were recognized; group II showed highest species diversity while group III, V and VI were mainly subsistence oriented. The results showed soil conditions improved with an increase in HG age. All HGs provided a varying degree of nutritional and food security to the households, a most important characteristic for sustaining livelihood under political isolation and economic blockade and land-locked situations. The study concludes that Mizo HGs can be a viable alternative to SC in providing regular income and therefore promotion of HGs can enhance socio-ecological, economic development, and further combats climate change impacts in this region and/or other regions of India having similar eco-regions.  相似文献   

12.

Background and Aims

Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples.

Methods

Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined.

Key Results

Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones.

Conclusions

Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains.  相似文献   

13.
The mechanism of action of purified apple pectin methylesterase on pectin (degree of methoxylation: DM 75) and methoxylated homogalacturonans (DM 70 and 90) was studied at pH 7.0 (optimal pH of the enzyme) and at pH 4.5 (close to the pH of apple juice). Different interchain distributions of the free carboxyl groups were obtained at pH 7.0 and 4.5: high-performance ion exchange chromatography indicated a typical single chain mechanism at pH 7.0, but a mechanism differing from the single and multiple chain ones at pH 4.5. However, the same intrachain distribution of the newly demethoxylated galacturonic acid residues was observed for both pHs by 1H NMR. The high content of consecutive de-esterified or consecutive esterified galacturonic acid residues suggested that apple PME acted with a multiple attack mechanism on the pectic substrate. The degree of multiple attack of the enzyme was greater than or equal to 10-11.  相似文献   

14.
Direct Compression Behavior of Low- and High-Methoxylated Pectins   总被引:1,自引:0,他引:1  
The objective of this study was to evaluate possible usefulness of pectins for direct compression of tablets. The deformation behavior of pectin grades of different degree of methoxylation (DM), namely, 5%, 10%, 25%, 35%, 40%, 50%, and 60% were, examined in terms of yield pressures (YP) derived from Heckel profiles for both compression and decompression and measurements of elastic recovery after ejection. All pectin grades showed a high degree of elastic recovery. DM 60% exhibited most plastic deformation (YP 70.4 MPa) whereas DM 5% (104.6 MPa) and DM 10% (114.7 MPa) least. However, DM 60% gave no coherent tablets, whereas tablet tensile strengths for DM 5% and DM 10% were comparable to Starch 1500®. Also, Heckel profiles were similar to Starch 1500®. For sieved fractions (180–250 and 90–125 μm) of DM 25% and DM 40% originating from the very same batch, YPs were alike, indicating minor effects of particle size. These facts indicate that DM is important for the compaction behavior, and batch-to-batch variability should also be considered. Therefore, pectins of low degree of methoxylation may have a potential as direct compression excipients.  相似文献   

15.
Fast production and purification of alpha-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 degrees C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.  相似文献   

16.
Homogalacturonan (HG) is a multi-functional pectic polysaccharide of primary cell walls involved in calcium cross-linking and gel formation, and the regulation of ionic status and porosity of the cell wall matrix, and is a source of oligosaccharins functioning in development and defence. Phase display monoclonal antibodies with specificity for de-esterified stretches ('blocks') of pectic HG have been isolated from a naive phage display library without the need for immunization of animals or conjugation of an oligosaccharide to protein. These antibodies, designated PAM1 and PAM2, bind specifically to de-esterified and un-substituted HG. Assays with a series of pectins de-esterified by the action of plant or fungal pectin methyl esterases indicated that the antibodies were specific to de-esterified blocks resulting from the blockwise action of plant pectin methyl esterases. Analysis of antibody binding to a series of oligogalacturonides indicated that optimal binding required in the region of 30 de-esterified GalA residues. The recognition of such a large epitope by these antibodies allows the HG block architecture of primary cell walls to be identified and localized for the first time. Furthermore, we have demonstrated that monoclonal antibodies with high specificity and avidity to cell wall epitopes can be generated using a 'single pot' phage display approach.  相似文献   

17.
18.
Zhang Z  Pierce ML  Mort AJ 《Phytochemistry》2007,68(8):1094-1103
Changes in homogalacturonans (HGs) and enzymes degrading them have been investigated during cotton (Gossypium hirsutum L.) cotyledon expansion. Using an in vivo assay for pectin-degrading enzymes that involves fluorescent labeled oligomers of GalA as substrate and capillary electrophoresis for product analysis, we found that endo- and exo-polygalacturonases are present in the cotyledon extracellular spaces, and there are dramatic changes in the levels of both activities as the cotyledons change their rate of expansion. Capacity for endo-polygalacturonase activity was highest during the initial stages of cotyledon expansion. However, for exo-polygalacturonase activity it was highest in the later stages of expansion. Cell walls were prepared from 3-, 5-, and 7-day-old cotton cotyledons and treated with liquid HF at -23 degrees C. This treatment cleaves the glycosidic linkages of most neutral sugars in the walls without degrading HGs. HGs with a relatively high degree of esterification can then be solubilized with water, and those with low esterification can be solubilized with concentrated imidazole buffer. The majority of HGs were obtained in the water extracts. The degrees of esterification were 57%, 47%, and 47% in water extracts and 34%, 25%, and 27% in imidazole extracts, in 3-, 5-, and 7-day-old cotton cotyledons, respectively. Using a PA100 ion-exchange column, the members of a GalA homologous series up to approximately 70 residues can be separated. The results from HG molecular length distribution analysis indicated that the HG at 3 days was on average shorter than that in the older cotyledons, perhaps reflecting the higher level of endo-polygalacturonase activity at this stage of more rapid growth.  相似文献   

19.
Aluminium (Al) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism.  相似文献   

20.
The application of FT-IR to the study of the structure and interactions of the major plant-cell wall polysaccharide pectin has been reported for many decades. Nevertheless, here we show that the generally reported methodology for one of its most commonly utilised applications, the measurement of the degree of methylesterification (DM), requires careful interpretation and sample handling; including consideration of the moisture content and ionisation state. We propose instead a different methodology based on the assessment of the magnitude of C–H stretches in the methyl groups relative to those in the backbone and demonstrate experimentally the advantage of this method. In addition, we add a theoretical dimension to our work, performing full quantum chemical (DFT) calculations of monomeric-, dimeric-, and trimeric-pectic compounds, in various states of partial methylesterification. These extensive calculations not only confirm the identity of the proposed methyl-band and illustrate its scaling with DM; but also demonstrate the success of the theoretical approach. Thus, DFT calculations are expected to be a valuable tool in the interpretation of IR spectra obtained from more complex systems such as polysaccharide conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号