首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2014,20(2):167-175
ObjectiveTo describe recent advances in the treatment of gastroenteropancreatic neuroendocrine tumors (GEP-NETs).MethodsA review of the published English language literature on GEP-NET therapy with a focus on practice-changing clinical trials.ResultsSomatostatin analog (SSA) treatment remains a cornerstone of GEP-NET therapy, primarily for patients with hormonally functional tumors and midgut carcinoids. The biologic agents everolimus and sunitinib have similar tumor-stabilizing effects in pancreatic NETs and are both approved to treat progressive low-intermediate-grade tumors. Their role in nonpancreatic NETs remains controversial. Cytotoxic chemotherapy is effective against pancreatic NETs, but modern prospective data is lacking. Radiolabeled SSAs will likely become more widely available once phase III randomized studies are completed.ConclusionsNew treatment options for GEP-NETs have become available and highlight the necessity of developing predictive biomarkers that will allow for appropriate and individualized therapy selection. (Endocr Pract. 2014;20:167-175)  相似文献   

2.
Glioblastoma multiforme (GBM) is the most common intracranial cancer but despite recent advances in therapy the overall survival remains about 20 months. Whole genome exon sequencing studies implicate mutations in the receptor tyrosine kinase pathways (RTK) for driving tumor growth in over 80% of GBMs. In spite of various RTKs being mutated or altered in the majority of GBMs, clinical studies have not been able to demonstrate efficacy of molecular targeted therapies using tyrosine kinase inhibitors in GBMs. Activation of multiple downstream signaling pathways has been implicated as a possible means by which inhibition of a single RTK has been ineffective in GBM. In this study, we sought a combination of approved drugs that would inhibit in vitro and in vivo growth of GBM oncospheres. A combination consisting of gefitinib and sunitinib acted synergistically in inhibiting growth of GBM oncospheres in vitro. Sunitinib was the only RTK inhibitor that could induce apoptosis in GBM cells. However, the in vivo efficacy testing of the gefitinib and sunitinib combination in an EGFR amplified/ PTEN wild type GBM xenograft model revealed that gefitinib alone could significantly improve survival in animals whereas sunitinib did not show any survival benefit. Subsequent testing of the same drug combination in a different syngeneic glioma model that lacked EGFR amplification but was more susceptible to sunitinib in vitro demonstrated no survival benefit when treated with gefitinib or sunitinib or the gefitinib and sunitinib combination. Although a modest survival benefit was obtained in one of two animal models with EGFR amplification due to gefitinib alone, the addition of sunitinib, to test our best in vitro combination therapy, did not translate to any additional in vivo benefit. Improved targeted therapies, with drug properties favorable to intracranial tumors, are likely required to form effective drug combinations for GBM.  相似文献   

3.
《Endocrine practice》2019,25(6):580-588
Objective: To report the rate of candidate actionable somatic mutations in patients with locally advanced and metastatic gastro-enteropancreatic (GEP) neuroendocrine tumors (NET) and of other genetic alterations that may be associated with tumorigenesis.Methods: A phase II mutation targeted therapy trial was conducted in patients with advanced well-differentiated G1/G2 GEP-NET. Mutations found in the mTOR pathway-associated genes led to treatment with the mTOR inhibitor everolimus, and were defined as actionable. Tumor deoxyribonucleic acid (DNA) from GEP-NET were sequenced and compared with germline DNA, using the OncoVAR-NET assay, designed for hybrid capture sequencing of 500 tumor suppressor genes and oncogenes. Somatic variants were called and copy-number (CN) variant analysis was performed.Results: Thirty patients (14 small-intestine, 8 pancreatic, 3 unknown primary NET, and 5 of other primary sites) harbored 37 lesions (4 patients had DNA of multiple lesions sequenced). Only 2 patients with sporadic NET (n = 26) had an actionable mutation leading to treatment with everolimus. Driver somatic mutations were detected in 18 of 30 patients (21/37 lesions sequenced). In the remaining samples without a driver mutation, CN alterations were found in 11/16 tumors (10/12 patients), including CN loss of chromosome (Chr) 18 (P<.05), CN gain of Chr 5, and loss of Chr 13. CN losses in Chr 18 were more common in patients without driver mutations detected. Pronounced genetic heterogeneity was detected in patients with multiple lesions sequenced.Conclusion: Genome-wide DNA sequencing may identify candidate actionable genes and lead to the identification of novel target genes for advanced well-differentiated GEP-NET.Abbreviations: Chr = chromosome; CN = copy number; DNA = deoxyribonucleic acid; FDA = Food and Drug Administration; GEP = gastro-enteropancreatic; MEN-1 = multiple endocrine neoplasia syndrome type 1; mTOR = mammalian target of rapamycin; NET = neuroendocrine tumor; PFS = progression-free survival; PNET = pancreatic neuroendocrine tumors; SINET = small-intestine neuroendocrine tumor  相似文献   

4.
No fully validated biological markers currently exist to predict responsiveness to or the development of evasion to anti-angiogenic therapy of cancer. The identification of such biomarkers is vital to move these therapies forward, as failure to respond to these treatments is often associated with rapid tumor progression that could have been averted had the intrinsic or acquired evasion to anti-angiogenic therapy been identified in a timely fashion. Furthermore, the high cost of antiangiogenic therapies makes it important to avoid utilizing them in the setting of lack of response or developing evasion, making the identification of biomarkers even more important. A number of potential physiologic, circulating, tissue, and imaging biomarkers have emerged from recently completed preclinical animal studies and clinical trials. In this review, we define 5 different types of biomarkers (physiologic, circulating, intratumoral, genetic polymorphisms, and radiographic); discuss the challenges in establishing biomarkers of antiangiogenic therapy in animal models and in clinical trials; and discuss future strategies to identify and validate biomarkers of anti-angiogenic therapy.  相似文献   

5.
No fully validated biological markers currently exist to predict responsiveness to or the development of evasion to anti-angiogenic therapy of cancer. The identification of such biomarkers is vital to move these therapies forward, as failure to respond to these treatments is often associated with rapid tumor progression that could have been averted had the intrinsic or acquired evasion to anti-angiogenic therapy been identified in a timely fashion. Furthermore, the high cost of antiangiogenic therapies makes it important to avoid utilizing them in the setting of lack of response or developing evasion, making the identification of biomarkers even more important. A number of potential physiologic, circulating, tissue, and imaging biomarkers have emerged from recently completed preclinical animal studies and clinical trials. In this review, we define 5 different types of biomarkers (physiologic, circulating, intratumoral, genetic polymorphisms, and radiographic); discuss the challenges in establishing biomarkers of antiangiogenic therapy in animal models and in clinical trials; and discuss future strategies to identify and validate biomarkers of anti-angiogenic therapy.  相似文献   

6.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.  相似文献   

7.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient''s clinical situation. At the early stages of the disease, the clinician''s priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.  相似文献   

8.
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are the second most prevalent group of advanced gastrointestinal tract tumors. Resources invested in research on this patient population have exponentially increased in recent years, and this has become one of the most attractive fields for oncological research. Several proangiogenic proteins have been found to be overexpressed in GEP-NETs, including vascular endothelial growth factor and its receptors and the more closely related intracellular signaling pathways such as the epidermal growth factor pathway, type I insulin-like growth factor receptor, and the PI3K-(PTEN)-AKT-mTOR pathway. The recent results of the three most important Phase III studies in GEP-NETs have allowed for approval of two targeted agents, sunitinib and everolimus, for the treatment of patients with pancreatic neuroendocrine tumors after decades of minimal advances in this population.  相似文献   

9.
Current pharmacological approaches to stabilize nonobstructive rupture-prone atherosclerotic plaques have only partially reduced the incidence of acute coronary syndromes and sudden death. Macrophages in these vulnerable plaques play a pivotal role in plaque destabilization, whereas smooth muscle cells promote plaque stability. In a recent study, we report that implantation of stents eluting everolimus, a mammalian target of rapamycin (mTOR) inhibitor, in atherosclerotic arteries of cholesterol-fed rabbits, led to a marked reduction in macrophage content without altering the amount of smooth muscle cells. Our in vitro studies showed that treatment of macrophages and smooth muscle cells with everolimus induced inhibition of translation of both cell types. However, cell death occurred only in macrophages and was characterized by bulk degradation of long-lived proteins, processing of microtubule associated protein light chain 3 (LC3), and cytoplasmic vacuolization, which are all markers of autophagy. Everolimus-induced autophagy was mediated by mTOR inhibition because cell viability was not affected using tacrolimus, an mTOR independent everolimus-analogue. These results provide proof-of-principle that macrophages in the vascular wall can be selectively cleared via induction of autophagy by mTOR inhibition. Therefore, stent-based delivery of an mTOR inhibitor may be a promising novel strategy for treatment of vulnerable atherosclerotic plaques.  相似文献   

10.
Recent advances in understanding the fundamental biology underlying clear-cell RCC have opened the door to a series of targeted agents, such as tyrosine kinase inhibitors (TKIs) or mTOR inhibitors. These new agents have become the standard of care in managing advanced clear-cell RCC. Choice of initial medical management in patients with metastatic clear-cell RCC should be guided by randomised studies. On the evidence available, the first-line therapy in patients with good- or intermediate-risk mRCC should be either sunitinib or pazopanib, or bevacizumab plus interferon. In selected patients sorafenib is an option, as is high-dose interleukin-2 if performance status is good. In patients with poor prognosis, temsirolimus is recommended. In cytokine refractory patients, sorafenib, when patients have progressed on a tyrosine kinase inhibitor everolimus is the agent of choice. Biró K, Küronya Z. Recent advancements in the treatment of renal cell carcinoma - focus on international guidelines.  相似文献   

11.
Combinatorial targeted therapies are more effective in treating cancer by blocking by-pass mechanisms or inducing synthetic lethality. However, their clinical application is hampered by resistance and toxicity. To meet this important challenge, we developed and tested a novel concept of biomarker-guided sequential applications of various targeted therapies using ErbB2-overexpressing/PTEN-low, highly aggressive breast cancer as our model. Strikingly, sustained activation of ErbB2 and downstream pathways drives trastuzumab resistance in both PTEN-low/trastuzumab-resistant breast cancers from patients and mammary tumors with intratumoral heterogeneity from genetically-engineered mice. Although lapatinib initially inhibited trastuzumab-resistant mouse tumors, tumors by-passed the inhibition by activating the PI3K/mTOR signaling network as shown by the quantitative protein arrays. Interestingly, activation of the mTOR pathway was also observed in neoadjuvant lapatinib-treated patients manifesting lapatinib resistance. Trastuzumab + lapatinib resistance was effectively overcome by sequential application of a PI3K/mTOR dual kinase inhibitor (BEZ235) with no significant toxicity. However, our p-RTK array analysis demonstrated that BEZ235 treatment led to increased ErbB2 expression and phosphorylation in genetically-engineered mouse tumors and in 3-D, but not 2-D, culture, leading to BEZ235 resistance. Mechanistically, we identified ErbB2 protein stabilization and activation as a novel mechanism of BEZ235 resistance, which was reversed by subsequent treatment with lapatinib + BEZ235 combination. Remarkably, this sequential application of targeted therapies guided by biomarker changes in the tumors rapidly evolving resistance doubled the life-span of mice bearing exceedingly aggressive tumors. This fundamentally novel approach of using targeted therapies in a sequential order can effectively target and reprogram the signaling networks in cancers evolving resistance during treatment.  相似文献   

12.
In principle, targeted therapies have optimal activity against a specific subset of tumors that depend upon the targeted molecule or pathway for growth, survival, or metastasis. Consequently, it is important in drug development and clinical practice to have predictive biomarkers that can reliably identify patients who will benefit from a given therapy. We analyzed tumor cell-line secretomes (conditioned cell media) to look for predictive biomarkers; secretomes represent a potential source for potential biomarkers that are expressed in intracellular signaling and therefore may reflect changes induced by targeted therapy. Using Gene Ontology, we classified by function the secretome proteins of 12 tumor cell lines of different histotypes. Representations and hierarchical relationships among the functional groups differed among the cell lines. Using bioinformatics tools, we identified proteins involved in intracellular signaling pathways. For example, we found that secretome proteins related to TGF-beta signaling in thyroid cancer cells, such as vasorin, CD109, and βIG-H3 (TGFBI), were sensitive to RPI-1 and dasatinib treatments, which have been previously demonstrated to be effective in blocking cell proliferation. The secretome may be a valuable source of potential biomarkers for detecting cancer and measuring the effectiveness of cancer therapies.  相似文献   

13.
The frequency of PI3K/Akt/mTOR (PAM) Pathway mutations in human cancers sparked interest to determine if the pathway is druggable. The modest clinical benefit observed with mTOR rapalogs (temsirolimus and everolimus) provided further motivation to identify additional nodes of pathway inhibition that lead to improved clinical benefit. Akt is a central signaling node of the PAM pathway and could be an ideal target for improved pathway inhibition. Furthermore, inhibitors of Akt may be especially beneficial in tumors with Akt1 mutations. Recently, multiple ATP-competitive Akt inhibitors have been identified and are currently in clinical development. This review details the medicinal chemistry efforts towards identification of these molecules, highlights relevant preclinical data supporting clinical evaluation, and summarizes current clinical development plans.  相似文献   

14.
Circulating endothelial cells (CECs) and circulating endothelial progenitors (CEPs) are currently being investigated in a variety of diseases as markers of vascular turnover or damage and, also in the case of CEPs, vasculogenesis. CEPs appear to have a “catalytic” role in different steps of cancer progression and recurrence after therapy, and there are preclinical and clinical data suggesting that CEC enumeration might be useful to select and stratify patients who are candidates for anti-angiogenic treatments. In some types of cancer, CECs and CEPs might be one of the possible hidden identities of cancer stem cells. The definition of CEC and CEP phenotype and the standardization of CEC and CEP enumeration strategies are highly desirable goals in order to exploit these cells as reliable biomarkers in oncology clinical trials.  相似文献   

15.
The mTOR inhibitor everolimus (RAD001, Afinitor) is an orally active anticancer agent. Everolimus demonstrates growth-inhibitory activity against a broad range of tumor cell histotypes in vitro and has the capacity to retard tumor growth in preclinical tumor models in vivo through mechanisms directed against both the tumor cell and the solid tumor stroma components. These properties have rendered it to be a clinically active drug, with subsequent registration in renal cell carcinoma (Motzer et al. [2008]. Lancet 372, 449–456) as well as showing strong potential as a combination partner (André F et al. [2008]. J Clin Oncol 26. Abstract 1003). Although everolimus has a high specificity for its molecular target, the ubiquitous nature of mTOR and the multifactorial influence that mTOR signaling has on cell physiology have made studies difficult on the identification and validation of a biomarker set to predict and monitor drug sensitivity for clinical use. In this review, a summary of the preclinical and clinical data relevant to biomarker development for everolimus is presented, and the advantages and problems of current biomarkers are reviewed. In addition, alternative approaches to biomarker development are proposed on the basis of examples of a combination of markers and functional noninvasive imaging. In particular, we show how basal levels of pAKT and pS6 together could, in principle, be used to stratify patients for likely response to an mTOR inhibitor.  相似文献   

16.
Sunitinib is an oral multitargeted receptor tyrosine kinase inhibitor with antiangiogenic and antitumor activity that mainly targets vascular endothelial growth factor receptors (VEGFRs). Very recently, sunitinib has been shown to be an active agent for the treatment of malignant pheochromocytomas. However, it is unclear whether sunitinib acts only through an antiangiogenic mechanism or whether it may also directly target tumor cells. Sunitinib markedly induced apoptosis of PC12 cells in a dose-dependent and time-dependent manner. Furthermore, in support of these findings, we found that sunitinib induced a reduction in the expression of the antiapoptotic molecule Bcl-2 as well as dephosphorylation of the proapoptotic molecule BAD, which results in the activation of BAD in these cells. Consistent with these apoptotic effects, our results showed that sunitinib inhibited phosphorylation of Akt and mTOR and was followed by a reduction of S6K1, which is a well-known target of mTOR. Knockdown of VEGFR-2 attenuated the sunitinib-induced effects, including apoptosis and inhibition of signaling pathways such as the phosphorylation of Akt as well as mTOR, and Bcl-2, which confirmed that these effects could be mediated by VEGFR-2. In addition, silencing of S6K1 induced apoptosis accompanied by a decrease in the phosphorylation of BAD and Bcl-2, similar to that observed with sunitinib treatment. Thus, these results together suggest that sunitinib initially exerts its apoptotic effect through the inhibition of VEGFR-2, which, when followed by reduction of its downstream effectors, including Akt/mTOR/S6K1, may lead to inhibition of the antiapoptotic molecule Bcl-2 and activation of the proapoptotic molecule BAD in PC12 cells. However, PC12 cells do not precisely reflect the pathogenesis of malignant cells. Therefore, we confirmed the key findings by replicating these experiments in human neuroblastoma SK-N-SH cells.  相似文献   

17.
Therapy options for patients with metastatic melanoma (MM) have considerably improved over the past decade. However, many patients still need effective therapy after unsuccessful immunotherapy, especially patients with BRAF-negative tumors who lack the option of targeted treatment second line. Therefore, the elucidation of efficient and personalized therapy options for these patients is required. In this study, three patient-derived cancer cells (PDCs) were established from NRAS Q61-positive MM patients. The response of PDCs and five established melanoma cell lines (two NRAS-positive, one wild type, and two BRAF V600-positive) was evaluated toward a panel of 527 oncology drugs using high-throughput drug sensitivity and resistance testing. The PDCs and cell lines displayed strong responses to MAPK inhibitors, as expected. Additionally, the PDCs and cell lines were responsive to PI3K/mTOR, mTOR, and PLK1 inhibitors among other effective drugs currently undergoing clinical trials. Combinations with a MEK inhibitor were tested with other targeted agents to identify effective synergies. MEK inhibitor showed synergy with multikinase inhibitor ponatinib, ABL inhibitor nilotinib, PI3K/mTOR inhibitor pictilisib, and pan-RAF inhibitor LY3009120. The application of the patients’ cancer cells for functional drug testing ex vivo is one step further in the process of identifying potential agents and agent combinations to personalize treatment for patients with MM. Our preliminary study results suggest that this approach has the potential for larger-scale drug testing and personalized treatment applications in our expansion trial. Our results show that drug sensitivity and resistance testing may be implementable in the treatment planning of patients with MM.  相似文献   

18.
Tyrosine Kinase Inhibitors (TKI) have significantly changed the landscape of current cancer therapy. Understanding of mechanisms of aberrant TK signaling and strategies to inhibit TKs in cancer, further promote the development of novel agents. ABT-869, a novel ATP-competitive receptor tyrosine kinase inhibitor is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) receptor families. ABT-869 showed potent antiproliferative and apoptotic properties in vitro and in animal cancer xenograft models using tumor cell lines that were "addicted" to signaling of kinases targeted by ABT-869. When given together with chemotherapy or mTOR inhibitors, ABT-869 showed at least additive therapeutic effects. The phase I trial for ABT-869 was recently completed and it demonstrated respectable efficacy in solid tumors including lung and hepatocellular carcinoma with manageable side effects. Tumor cavitation and reduction of contrast enhancement after ABT-869 treatment supported the antiangiogenic activity. The correlative laboratory studies conducted with the trial also highlight potential biomarkers for future patient selection and treatment outcome. Parallel to the clinical development, in vitro studies on ABT-869 resistance phenotype identified novel resistance mechanism that may be applicable to other TKIs. The future therapeutic roles of ABT-869 are currently been tested in phase II trials.  相似文献   

19.
The importance of neovascularization for primary and metastatic tumor growth fostered numerous clinical trials of angiogenesis inhibitors either alone or in combination with conventional antineoplastic therapies. One challenge with the use of molecularly targeted agents has been the disconnection between size reduction and tumor biologic behavior, either when the drug is efficacious or when tumor resistance emerges. Here, we report the synthesis and characterization of 64Cu-NOTA-bevacizumab as a PET imaging agent for imaging intratumoral VEGF content in vivo. 64Cu-NOTA-bevacizumab avidly accumulated in 786-O renal carcinoma xenografts with lower levels in host organs. RAD001 (everolimus) markedly attenuated 64Cu-NOTA-bevacizumab accumulation within 786-O renal carcinoma xenografts. Tumor tissue and cellular molecular analysis validated PET imaging, demonstrating decreases in total and secreted VEGF content and VEGFR2 activation. Notably, 64Cu-NOTA-bevacizumab PET imaging was concordant with the growth arrest of RAD001 tumors. These data suggest that immunoPET targeting of angiogenic factors such as VEGF could be a new class of surrogate markers complementing the RECIST criteria in patients receiving molecularly targeted therapies.  相似文献   

20.

Purpose

Despite the advent of FDA-approved therapeutics to a limited number of available targets (kinases and mTOR), PFS of kidney cancer (RCC) has been extended only one to two years due to the development of drug resistance. Here, we evaluate a novel therapeutic for RCC which targets the exportin-1 (XPO1) inhibitor.

Materials and Methods

RCC cells were treated with the orally available XPO1 inhibitor, KPT-330, and cell viability and Annexin V (apoptosis) assays, and cell cycle analyses were performed to evaluate the efficacy of KPT-330 in two RCC cell lines. Immunoblotting and immunofluorescence analysis were performed to validate mechanisms of XPO1 inhibition. The efficacy and on-target effects of KPT-330 were further analyzed in vivo in RCC xenograft mice, and KPT-330-resistant cells were established to evaluate potential mechanisms of KPT-330 resistance.

Results

KPT-330 attenuated RCC viability through growth inhibition and apoptosis induction both in vitro and in vivo, a process in which increased nuclear localization of p21 by XPO1 inhibition played a major role. In addition, KPT-330 resistant cells remained sensitive to the currently approved for RCC multi-kinase inhibitors (sunitinib, sorafenib) and mTOR inhibitors (everolimus, temsirolimus), suggesting that these targeted therapeutics would remain useful as second line therapeutics following KPT-330 treatment.

Conclusion

The orally-available XPO1 inhibitor, KPT-330, represents a novel target for RCC whose in vivo efficacy approaches that of sunitinib. In addition, cells resistant to KPT-330 retain their ability to respond to available RCC therapeutics suggesting a novel approach for treatment in KPT-330-naïve as well as -resistant RCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号