首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oxidative DNA damage is one of the key events thought to be involved in mutation and cancer. The present study examined the accumulation of M1dG, 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, DNA adducts after single dose or 1-year exposure to polyhalogenated aromatic hydrocarbons (PHAH) in order to evaluate the potential role of oxidative DNA damage in PHAH toxicity and carcinogenicity. The effect of PHAH exposure on the number of M1dG adducts was explored initially in female mice exposed to a single dose of either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or a PHAH mixture. This study demonstrated that a single exposure to PHAH had no significant effect on the number of M1dG adducts compared to the corn oil control group. The role of M1dG adducts in polychlorinated biphenyl (PCB)-induced toxicity and carcinogenicity was further investigated in rats exposed for a year to PCB 153, PCB 126, or a mixture of the two. PCB 153, at doses up to 3000 microg/kg/day, had no significant effect on the number of M1dG adducts in liver and brain tissues from the exposed rats compared to controls. However, 1000 ng/kg/day of PCB 126 resulted in M1dG adduct accumulation in the liver. More importantly, coadministration of equal proportions of PCB 153 and PCB 126 resulted in dose-dependent increases in M1dG adduct accumulation in the liver from 300 to 1000 ng/kg/day of PCB 126 with 300-1000 microg/kg/day of PCB 153. Interestingly, the coadministration of different amounts of PCB 153 with fixed amounts of PCB 126 demonstrated more M1dG adduct accumulation with higher doses of PCB 153. These results are consistent with the results from cancer bioassays that demonstrated a synergistic effect between PCB 126 and PCB 153 on toxicity and tumor development. In summary, the results from the present study support the hypothesis that oxidative DNA damage plays a key role in toxicity and carcinogenicity following long-term PCB exposure.  相似文献   

3.
4.
Developmental exposure to polychlorinated biphenyls (PCBs) induces motor alterations in humans by unknown mechanisms. It remains unclear whether: (a) all non-dioxin-like (NDL) PCBs are neurotoxic or it depends on the grade of chlorination; (b) they have different neurotoxicity mechanisms; (c) they affect differently males and females. The aims of this work were to assess: (1) whether perinatal exposure to 3 NDL-PCBs with different grades of chlorination, (PCBs 52, 138 or 180) affects differentially motor activity in adult rats; (2) whether the effects are different in males or females and (3) the mechanisms involved in impaired motor activity. Rats were exposed to PCBs from gestational day 7 to post-natal day 21. Experiments were performed when the rats were 4 months-old. PCB52 did not affect motor activity, PCB180 reduced it in males but not in females and PCB138 reduced activity both in males and females. PCB52 or 138 did not affect extracellular dopamine in nucleus accumbens (NAcc). PCB180 increased it both in males and females. Extracellular glutamate in NAcc was reduced by the three PCBs. Activation of metabotropic glutamate receptors (mGluRs) in NAcc increased extracellular dopamine in control rats and in those exposed to PCB52 and reduced dopamine in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs increases dopamine in females and reduces it in males. The opposite changes were observed for glutamate. mGluRs activation reduced extracellular glutamate in control rats and in those exposed to PCB52 and increased glutamate in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs reduces glutamate in females and increases it in males. The data support that different NDL-PCBs affect differently motor activity. Increased glutamate release in NAcc following activation of mGluRs would be involved in reduced dopamine release and reduced motor activity in rats exposed to PCB138 or 180.  相似文献   

5.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and have been associated with abnormal liver enzymes and suspected nonalcoholic fatty liver disease (NAFLD), obesity, and the metabolic syndrome in epidemiological studies. In epidemiological surveys of human PCB exposure, PCB 153 has the highest serum levels among PCB congeners. To determine the hepatic effects of PCB 153 in mice, C57BL/6J mice were fed either a control diet (CD) or a high fat diet (HFD) for 12 weeks, with or without PCB 153 coexposure. The metabolite extracts from mouse livers were analyzed using linear trap quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FTICR MS) via direct infusion nanoelectrospray ionization (DI-nESI) mass spectrometry. The metabolomics analysis indicated no difference in the metabolic profile between mice fed the control diet with PCB 153 exposure (CD+PCB 153) and mice fed the control diet (CD) without PCB 153 exposure. However, compared with CD group, levels of 10 metabolites were increased and 15 metabolites were reduced in mice fed HFD. Moreover, compared to CD+PCB 153 group, the abundances of 6 metabolites were increased and 18 metabolites were decreased in the mice fed high fat diet with PCB 153 exposure (HFD+PCB 153). Compared with HFD group, the abundances of 2 metabolites were increased and of 12 metabolites were reduced in HFD+PCB 153 group. These observations agree with the histological results and indicate that the metabolic effects of PCB 153 were highly dependent on macronutrient interactions with HFD. Antioxidant depletion is likely to be an important consequence of this interaction, as this metabolic disturbance has previously been implicated in obesity and NAFLD.  相似文献   

6.
To characterize PCB action on follicular cell steroidogenesis two PCB congeners were selected as model substances. PCB 126 because of its dioxin-like configuration and high toxicity and PCB 153 because it is one of the most commonly detected PCB congeners in breast milk. The direct effect of PCBs was investigated using a culture system of porcine theca and granulosa cells collected from porcine preovulatory follicles. Granulosa and theca cells were cultured in M199 medium supplemented with 1, 10 or 100 pg/ml of PCB 126 or 1, 10 and 100 ng/ml of PCB 153. The media were changed after 48, 96 and 144 h and frozen until further estradiol (E2) analysis. Additionally, progesterone (P4) was measured in the granulosa cells culture medium and testosterone (T) in theca cells culture medium. Decrease of testosterone concentration in the theca cells culture medium was found after 96 and 144 hours in culture by both investigated PCB congeners. A decrease in E2 concentration was found after exposure to PCB 153. These findings suggest different actions of two congeners on the steroid synthesis in theca cells. The lack of an increase in E2 secretion after the exposure to PCB 126 could be due to depletion of androgen precursor. In granulosa cell culture PCB153 decreased E2 secretion and increased P4 secretion suggesting luteinization and disruption of aromatization process. PCB 126 in a doses from 1 to 10 pg had no effect on granulosa cells steroidogenesis. However, the highest dose (100 pg) increased concentration of both E2 and P4. This observation suggest that PCB 126 in a pharmacological doses may affect cell membrane permeability, thereby increasing steroid outflow into the medium. These results suggest time dependent and cell-specific differences in PCB 153 and 126 action on follicular cells steroidogenesis. Further studies are required to elucidate the mechanism of PCBs action on ovarian steroidogenesis.  相似文献   

7.
Halogenated aromatic hydrocarbon including polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants. Although health effects associated with exposure to these chemicals, including motor dysfunction and impairment in memory and learning, have been identified, their molecular site of action is unknown. Previous study from this laboratory demonstrated that, while ortho PCBs perturbed intracellular signaling mechanisms including Ca2+ homeostasis, receptor-mediated inositol phosphate production and translocation of PKC, non-ortho PCBs did not. Since PKC signaling pathway is implicated in the modulation of motor behavior, as well as learning and memory, and the roles of PKC are isoform-specific, we have now studied the effects of two structurally distinct PCBs on isoforms of PKC in cerebellar granule cell culture model. Cells were exposed to 2,2'-dichlorobiphenyl (ortho PCB; 2,2'-DCB) or 4,4'-dichlorobiphenyl (non-ortho PCB; 4,4'-DCB) for 15 min, respectively, and subsequently fractionated and immunoblotted against the selected PKC monoclonal antibodies (alpha, gamma, delta, epsilon, lambda, iota). While 2,2'-DCB induced a translocation of PKC-alpha [cytosol (% control): 54 +/- 12 at 25 microM and 66 +/- 10 at 50 microM; membrane (% control): 186 +/- 37 at 25 microM and 200 +/- 48 at 50 microM] and -epsilon [cytosol (% control): 92 +/- 12 at 25 microM and 97 +/- 15 at 50 microM; membrane (% control): 143 +/- 23 at 25 microM and 192 +/- 24 at 50 microM] from cytosol to membrane fraction in a concentration-dependent manner, 4,4'-DCB had no effects. 2,2'-DCB induced translocation of PKC-alpha was blocked by pretreatment with sphingosine, suggesting a possible role of sphingolipid pathway. Although reports on implication of PKC-gamma with learning and memory are relatively extensive, the expression of this particular isoform in the primary cerebellar granule cells was below the detectable level. PKC-delta, -lambda and -iota were present in these cells, but were not altered by PCB exposure. These results suggest that the effects of 2,2'-DCB on PKC is isoform-dependent and PKC-alpha as well as PKC-epsilon may be target molecules for ortho-PCBs in neuronal cells.  相似文献   

8.
Chromosome studies were carried out on peripheral blood lymphocytes from 36 PCB-poisoned patients and on ten PCB-unexposed healthy controls. Nineteen out of 36 patients (52.7%) had either chromosome or chromatid aberrations, while none of the controls had. The highest percentage of cells with chromosome or chromatid aberrations in a single individual was 34.0. The blood PCB level ranged from 6.4 to 101.8 ppb, with a mean of 34.1 ppb. No correlation was observed between the level of blood PCB and the presence or absence of chromosome or chromatid aberrations.  相似文献   

9.
Atlantic croaker (Micropogonias undulatus) were exposed to the polychlorinated biphenyl (PCB) mixture (Aroclor 1254) or one of three individual congeners (planar PCB 77 or ortho-substituted PCB 47 and PCB 153) in the diet for 30 days to investigate the effects of PCBs on circulating thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Aroclor 1254 (0.2 and 1.0 mg/kg body mass/day) decreased plasma T3 levels consistently, but the effects on T4 levels were inconsistent from year to year. Exposure to PCB 153 (0.1 and 1.0 mg/kg body mass/day) significantly lowered both T4 and T3, while PCB 47 at the same doses had no effect on thyroid hormone levels. The lower doses of PCB 77 (0.004, 0.01 and 0.02 mg/kg body mass/day) had no effect on T4 or T3, whereas the highest dose (0.1 mg/kg body mass/day) increased T4 levels significantly. The results of the present study demonstrate that exposure to PCBs at environmentally realistic concentrations can have profound effects on the thyroid status of Atlantic croaker. The ortho-substituted PCB 153 appears to contribute at least partially to the deleterious effects of Aroclor 1254 on thyroid status, whereas the planar PCB 77 at concentrations present in the mixture is unlikely to alter thyroid hormone levels.  相似文献   

10.
The method of two-dimensional protein gel electrophoresis was used to evaluate the changes at the proteins level following oxygen exposure of the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Fifty-seven proteins showed significant differential expression. The cellular concentration of 35 proteins decreased while that of nineteen increased as a specific consequence of oxidative conditions. The proteins that were less abundant belonged to various functional categories such as nucleic acid and protein biosynthesis, detoxification mechanisms, or cell division. Interestingly, quantitative real-time PCR revealed that the genes encoding detoxification enzymes (rubrerythrins, superoxide reductase) are down regulated. The loss of viability of D. vulgaris Hildenborough under these oxidative conditions (Fournier et al., J. Biol. Chem. 279 (2004) 1785) can be directly related to the decrease in the cellular concentrations of these proteins, thereby specifying the toxicity of oxygen for the cells. Among the proteins that were more abundant under oxygen exposure, several thiol-specific peroxidases (thiol-peroxidase, BCP-like protein, and putative glutaredoxin) were identified. Using RT-PCR, the up-regulation of the genes encoding the thiol-peroxidase and the BCP was demonstrated. That is the first time that these proteins have been shown to be involved in the defense of D. vulgaris toward an oxidative stress. Several hypothetical proteins were also shown to be differentially expressed. A function in the defense mechanism against an oxidative stress is proposed for these uncharacterized proteins.  相似文献   

11.
To test the hypothesis that some persistent organic pollutants contribute to the increased prevalence of allergic disease, the effects of selected compounds on cytokine production by PBMC from control and allergic donors were evaluated. Cells were cultured for six days in the presence of a xenobiotic (PCB 153, hexachlorobenzene, pentachlorobenzene, pentachlorophenol, lindane, atrazine or DMSO vehicle) with phytohemagglutinin (PHA) or Dermatophagoides pteronyssinus extract, then for one day in the presence of PHA + phorbol 12-myristate 13-acetate. PCB 153 reduced the levels of IL-10, IFN-gamma and TNF-alpha. Hexachlorobenzene reduced the levels of IL-5, IL-10 and IFN-gamma. Pentachlorobenzene reduced IL-6 levels. Pentachlorophenol reduced IL-5 levels. Lindane and atrazine reduced both IL-5 and IFN-gamma. In addition, lindane reduced TNF-alpha levels. As these compounds had similar effects on cells from allergic and non-allergic donors, and as these effects were, in all cases, very limited indeed, the potential deleterious impact of the xenobiotics tested on the allergic response seems unlikely.  相似文献   

12.
13.
The endoplasmic reticulum (ER) is the site of folding for proteins that are resident in the ER or that are destined for the Golgi, endosomes, lysosomes, the plasma membrane, or secretion. Cotranslational addition of preassembled glucose(3)-mannose(9)-N-acetylglucosamine(2) core oligosaccharides (N-glycosylation) is a common event for polypeptides synthesized in this compartment. Protein-bound oligosaccharides are exposed to several ER glycanases that sequentially remove terminal glucose or mannose residues. Their activity must be tightly regulated because the N-glycan composition determines whether the associated protein is subjected to folding attempts in the ER lumen or whether it is retrotranslocated into the cytosol and degraded.  相似文献   

14.
The rice (Oryza sativa) GTs belong to a super family possibly with hundreds of members. However, which GTs are involved in plant response to toxic chemicals is unknown. Here, we demonstrated 59 novel GT genes screened from our recent genome-wide sequencing datasets of rice crops exposed to atrazine (a herbicide persistent in ecosystems). Analysis of GT genes showed that most of the GTs contain functional domains typically found in proteins transferring glycosyl moieties to their target compounds. A phylogenetic analysis revealed that many GT genes from different families have diverse cis-elements necessary for response to biotic and environmental stresses. Experimental validation for the GTs was undertaken through a microarray, and 36 GT genes were significantly detected with an expression pattern similar to that from deep-sequencing datasets. Furthermore, 12 GT genes were randomly selected and confirmed by quantitative real-time RT-PCR. Finally, the special activity of total GTs was determined in rice roots and shoots, with an increased activity under the atrazine exposure. This response was closely associated with atrazine absorption in the rice tissues. These results indicate that exposure to atrazine can trigger specific GT genes and enzyme activities in rice.  相似文献   

15.
16.
Pseudomonas putida is a saprophytic bacterium with remarkable environmental adaptability and the capacity to tolerate high concentrations of heavy metals. The strain P. putida-Cd001 was isolated from soil contaminated with Cd, Zn and Pb. Membrane-associated and cytosolic proteomes were analyzed to identify proteins whose expression was modulated in response to 250 μM CdSO(4). We identified 44 protein spots in the membrane and 21 in the cytosolic fraction differentially expressed in Cd-treated samples compared to untreated controls. Outer membrane porins from the OprD and OprI families were less abundant in bacteria exposed to Cd, whereas those from the OprF and OprL, OprH and OprB families were more abundant, reflecting the increased need to acquire energy sources, the need to maintain membrane integrity and the process of adaptation. Components of the efflux system, such as the CzcB subunit of the CBA system, were also induced by Cd. Analysis of the cytosolic proteome revealed that proteins involved in protein synthesis, degradation and folding were induced along with enzymes that combat oxidative stress, showing that the entire bacterial proteome is modulated by heavy metal exposure. This analysis provides new insights into the adaptation mechanisms used by P. putida-Cd001 to survive in Cd-polluted environments.  相似文献   

17.
18.
Response of adenine nucleotides (ATP, ADP, AMP) and adenylate energy charge (EC) to atrazine, a triazine herbicide, was evaluated as an indicator of metabolic state in Zostera marina L. (eelgrass), a submerged marine angiosperm. Short-term (6 h) atrazine stress reduced ATP and total adenylates (AT) at both 10 and 100 ppb, but EC remained constant. Net productivity decreased at 100, but not at 10 ppb atrazine over 6 h. Long-term (21 day) atrazine stress was evidenced by growth inhibition and 50% mortality near 100 ppb. EC was reduced at 0.1, 1.0 and 10 ppb atrazine, but ATP and EC increased with physiological response to severe stress (100 ppb) after 21 days. Apparently, ATP and AT decrease over the short-term but rebound over the long-term with severe atrazine stress, increasing beyond control levels before plant death results. Supplementing adenine nucleotide and EC results with more conventional quantitative analyses should afford greater knowledge of physiological response to environmental variation.  相似文献   

19.
20.
BackgroundPolychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies.ObjectiveThe purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD).MethodsMale C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression.ResultsIn control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in β-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels.ConclusionPCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient–toxicant interaction potentially impacts human obesity/NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号