首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Genetics of control mechanisms that underlies sex differentiation in date palm is not known. Sex of the plants becomes known only at the time of first flowering, which takes around 5 years. In comparison, molecular diagnosis (if available/feasible) promises quick and reliable identification of sex types very early when plantlets are growing in seedbeds. To develop such an assay, genomic DNA from 45 individual plants (25 female and 20 male) belonging to different varieties of date palm was subjected to PCR amplification using 100 random amplified polymorphic DNA (RAPD) and 104 intersimple sequence repeat (ISSR) primers. Initially, two bulk genomic DNA samples (each made by pooling DNA from ten male and female plants, separately) were used. A primer showing sex-specific band in bulked samples was further used for amplification of the genomic DNA of the individual samples of that bulk. Only one RAPD primer, OPA-02, amplified a fragment of ~1.0 kb in all the individual samples of male genotypes, whereas this fragment was absent in all the female genotypes. This male-specific fragment was cloned and sequenced (GenBank accession no. JN123357), and a sequence-characterized amplified region (SCAR) primer pair was designed that amplified a 406-bp fragment in both female and male genotypes and a unique fragment of 354 bp in only male genotypes. The SCAR marker was further validated using 25 female and ten male date palm plants belonging to different varieties collected from different locations.  相似文献   

2.
The actinorhizal plant seabuckthorn (Hippophae rhamnoides L., Elaeagnaceae) is a wind pollinated dioecious crop. To distinguish male genotypes from female genotypes early in the vegetative growth phase, we have developed robust PCR-based marker(s). DNA bulk samples from 20 male and 20 female plants each were screened with 60 RAPD primers. Two primers, OPA-04 and OPT-06 consistently amplified female-specific (FS) polymorphic fragments of 1,164 and 868 bp, respectively, that were absent in the male samples. DNA sequence of the two markers did not exhibit significant similarity to previously characterized sequences. A sequence-characterized amplified region marker HrX1 (JQ284019) and HrX2 (JQ284020) designed for the two fragments, continued to amplify the FS allele in 120 female plants but not in 100 male plants tested in the current study. Thus, HrX1 and HrX2 are FS markers that can determine the sex of seabuckthorn plants in an early stage and expedite cultivations for industrial applications.  相似文献   

3.
The random amplified polymorphic DNA (RAPD) technique was used to determine the sex of a dioecious species, Carica papaya L., with three sex types, male, female and hermaphrodite. A 450 bp marker fragment, named PSDM(Papaya Sex Determination Marker), exists in all male and hermaphrodite plants but not in the female plants so far analyzed. The DNA sequence of PSDM exhibited no significant similarity to previously reported sequences. A sequence-characterized amplified region (SCAR) marker, SCARps, was developed from PSDM to determine the sex of papaya. Southern hybridization, using PSDM as a probe, showed that PSDM exists in the male and hermaphrodite genomes, but not in the female genome. This result strongly suggests that PSDM is located on the chromosome region that is specific to the male and the hermaphrodite. SCARps is a suitable marker for the precise and rapid diagnosis of sex in papaya. Received: 1 February 2001 / Accepted: 22 May 2001  相似文献   

4.
5.
谭清苏铁性别连锁的RAPD和SCAR分子标记   总被引:2,自引:0,他引:2  
利用RAPD(Random amplified polymorphicDNA)分子标记技术,寻找谭清苏铁(Cycas tanqingii)中与性别相关的分子标记,筛选了160个10bp的随机引物,产生了2500多个RAPD条带。只有引物S0465(CCCCGGTAAC)产生了一条大约500bp的雌性特异RAPD标记,该分子标记出现在所有的供试雌性植株中,而所有的供试雄性植株都不具有该标记。对该特异片段进行了克隆和序列测定,并根据序列分析结果将RAPD标记转化为重复性和特异性更好的特异特征序列扩增区域(SCAR)分子标记,并命名为STQC-S465-483。分子标记的建立可用于谭清苏铁幼苗性别的早期鉴定,为谭清苏铁就地保护和迁地保护提供技术支持。  相似文献   

6.
银杏性别相关分子标记   总被引:12,自引:0,他引:12  
利用RAPD技术寻找银杏(Ginkgo biloba L.)中与性别相关的分子标记。筛选了1200个10bp的随机引物,产生了8372个RAPD条带。只有S1478产生一条大小为682bp、雄性特异的分子标记,该分子标记被命名为S1478—682,出现在所有雄性植株中,而所有雌性植株都不具有该分子标记。通过在北京和沈阳种植的银杏植株的RAPD推广验证,说明该分子标记可以用来检测银杏植株的性别。  相似文献   

7.
芦笋(Asparagus officinalis L.)又名石刁柏、龙须菜,系雌雄异株宿根性植物,是重要的经济作物之一。芦笋的性染色体为一对同形的L5染色体,雌性的性染色体为XX,雄性的性染色体为XY。性别决定的多态性是由位于一对L5性染色体上的一个显性基因M决定的[1-3],雌株基因型为隐性纯合子mm,雄株为显性纯合子MM(又称超雄株)或杂合子Mm。在生产上,由于雄株比雌株高产25%以上[4],并具有极强的抗病性和生命力,故雄株特别是超雄株则倍受生产者的青睐,但芦笋雌雄鉴定只有等到种植的第二年待植株开花时才能进行,这就严重影响了芦笋的有目的种植和经济效…  相似文献   

8.
Ventura T  Aflalo ED  Weil S  Kashkush K  Sagi A 《Heredity》2011,107(5):456-461
In this study, a female-specific DNA marker in the freshwater prawn Macrobrachium rosenbergii was identified through amplified fragment length polymorphism (AFLP). The AFLP-derived sequence-characterized amplified region (SCAR) marker was tested in over 200 individuals, giving reproducible sex identification. Further molecular characterization of the sex-marker's genomic region (~ 3 kb long) revealed the presence of tandem and inverted repeats. The ~ 3-kb sequence was identified both in male and female prawns, but with subtle differences: a deletion of 3 bp (present in female prawn but absent in male prawn) identified upstream of the SCAR marker sequence and two female-specific single-nucleotide polymorphisms, both indicating that male prawns are homozygous, whereas female prawns are heterozygous in this locus. Fluorescent in situ hybridization showed the ~ 3-kb sequence to be unique: to the best of our knowledge, this is the first report of a unique sex-specific sequence observed in situ in crustaceans. The sex-specific marker identified in M. rosenbergii may have considerable applied merit for crustacean culture in that it will enable the determination of genetic sex at early developmental stages when phenotypic differences are not identifiable.  相似文献   

9.
One hundred decamer primers of random-amplified polymorphic DNA were tested on dioecious Asparagus officinalis plants to identify sex-linked molecular markers. One primer (S368) produced two markers (S368-928 and S368-1178) in female plants. These two DNA markers were identified in 30 male and female plants, respectively, and a S368-928 marker was proved to be linked to the female sex locus. The female-linked S368-928 marker was sequenced and specific primers were synthesized to generate a 928 bp marker of sequence characterized amplified regions (SCAR) in female plants, SCAR928. SCAR928 could be used to correctly screen homozygous mm female plants of A. officinalis. However, results of Southern blot analysis suggest that the hybridization pattern of S368-928 was presented in both sex plants. This text was submitted by the authors in English.  相似文献   

10.
The mechanism of sex determination in dioecious species of the genus Atriplex (Chenopodiaceae) has not been determined. This paper reports the discovery of a male-specific DNA fragment in the diploid dioecious species A. garrettii. DNA samples extracted individually from ten male and ten female plants were bulked by sex. Random amplified polymorphic DNA (RAPD) fragments were generated in the two bulks in order to identify markers that were polymorphic between male and female plants. A total of 158 decamer primers were tested. A 2075 base-pair (bp) male-specific DNA fragment generated with the OPAF-14 primer was identified. The fragment was cloned and partially sequenced and 24-mer primers that exclusively amplified this fragment were constructed. When 124 male plants, 126 female plants, and one hermaphroditic plant were tested individually, the male-specific 2075-bp DNA fragment was present in the hermaphrodite and all but one of the male plants, and was absent in all female plants. A smaller DNA fragment (~1800 bp) that was homologous to the 2075-bp fragment was amplified from the single male plant that lacked the 2075-bp fragment. Cytogenetic analysis revealed no apparent heteromorphic sex chromosomes. These observations suggest that sex determination in A. garrettii is genetic, with no evidence of heteromorphic sex chromosomes.  相似文献   

11.
利用RAPD(Random amplified polymorphic DNA)分子标记技术,寻找谭清苏铁(Cycas tanqingii)中与性别相关的分子标记,筛选了160个10bp的随机引物,产生了2500多个RAPD条带。只有引物S0465 (CCCCGGTAAC)产生了一条大约500bp的雌性特异RAPD标记,该分子标记出现在所有的供试雌性植株中,而所有的供试雄性植株都不具有该标记。对该特异片段进行了克隆和序列测定,并根据序列分析结果将RAPD标记转化为重复性和特异性更好的特异特征序列扩增区域(SCAR)分子标记,并命名为STQC-S465-483。分子标记的建立可用于谭清苏铁幼苗性别的早期鉴定,为谭清苏铁就地保护和迁地保护提供技术支持。  相似文献   

12.
An aberrant random amplified polymorphic DNA (RAPD) marker in genomic DNA of tissue culture plantlets was frequently observed during a comparison of DNA fingerprints derived from potato germplasm grown in tissue culture and the field. The RAPD marker was cloned, sequenced and determined to be of bacterial origin. A bacterial contaminant was isolated from the tissue culture plants and identified as a Bacillus pumilus. A set of sequence characterised amplified region (SCAR) primers were designed from the sequence of the cloned fragment and tested for the specific detection of B. pumilus. Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) were also used to generate B. pumilus profiles specific to our isolate in order to test and confirm the sequence homology of amplified markers generated from a range of DNA samples isolated from tissue culture plants and pure isolates of B. pumilus-like bacteria.  相似文献   

13.
大麻性别的RAPD和SCAR分子标记   总被引:2,自引:0,他引:2  
利用随机扩增多态性DNA(randomamplifiedpolymorphicDNA,RAPD)技术获得与大麻性别连锁的分子标记.将10株雄性大麻或10株雌性大麻的单个DNA样品等量混合分别组成雄性或雌性DNA池(DNApool),以提供具有相同遗传背景的雌、雄性DNA样品.每个随机引物分别用三个不同的循环程序进行PCR扩增.在30个随机引物中,用引物401扩增得到一条约2.5kb雄性多态性片段.对该片段进行了克隆和序列分析,并根据序列分析结果将上述RAPD分子标记转化为重复性和特异性更好的SCAR(sequencecharacterizedamplifiedregions)分子标记.  相似文献   

14.
The process of sex differentiation in fishes is regulated by genetic and environmental factors. The sex of Patagonian pejerrey (Odontesthes hatcheri) appears to be under strong genotypic control (GSD) because the sex ratios are balanced (1:1) between 17°C and 23°C. However, sex ratios become female-biased at <15°C and male-biased at 25°C, which shows that this species also possesses some degree of temperature-dependent sex determination (TSD). Identification of the genetic sex of an individual will help elucidate the molecular basis of sex differentiation in this species. In this study, we used amplified fragment length polymorphism (AFLP) analysis to develop a genetic linkage map for both sexes and a sex-linked DNA marker for Patagonian pejerrey. The AFLP analysis of 23 male and 23 female progeny via 64 primer combinations produced a total of 153 bands. The genetic linkage map consisted of 79 markers in 20 linkage groups and 48 markers in 15 linkage groups for males and females, respectively. One AFLP marker tightly linked to the sex-determining locus was identified: the marker, ACG/CAA-217, amplified to the male-specific DNA fragment. Sequence analysis of this region revealed a single nucleotide polymorphism (SNP) between males and females, which was converted into a SNP marker. This marker provides genetic confirmation that the sex of Patagonian pejerrey is determined genetically and would be useful for the analysis of the molecular basis of GSD and TSD in this species.  相似文献   

15.
The sex chromosomes of the silkworm, Bombyx mori, are designated ZW for the female and ZZ for the male. We previously characterized a female-specific randomly amplified polymorphic DNA (RAPD) marker, designated Female-218, from the translocation-bearing W chromosomes. These W chromosomes contain a region of the second chromosome, which carries visible larval markers of the p loci. We used strain TWPB in which female larvae have black skin due to the p(B) gene (T(W;2)p(B), +p/+p) while male larvae have whitish skin (+p/+p). To determine whether the Female-218 RAPD marker is derived from the "W region" or a "second chromosome fragment", we induced a detachment of the translocated W chromosome, T(W;2)p(B), by treating the eggs with hot water at an early developmental stage. After hot water treatment, we obtained 27 white female larvae out of 4850 female larvae. The Female-218 RAPD marker was not amplified in 26 out of 27 white female larvae, and was amplified from one white female larva. Moreover, we obtained 11 black male larvae out of 5377 male larvae. Eight out of 11 black male larvae became adult moths, and the Female-218 RAPD marker was amplified from all eight male moths. Examination of the genetic relationship between the Female-218 RAPD marker and the second chromosome fragment of the translocated W chromosome strongly indicates that the Female-218 RAPD marker is amplified from the region of second chromosome fragment of the T(W;2)p(B) chromosome.  相似文献   

16.
In western Canada, the Bt-10 resistance gene in wheat (Triticum aestivum) is effective against all the known races of common bunt caused by Tilletia tritici and T laevis. The genotypes of 199 F2 plants, originated from a cross between BW553 containing Bt-10 and the susceptible spring wheat cultivar 'Neepawa,' were established in greenhouse and field inoculation studies. A ratio of 1:2:1 resistant : heterozygous : susceptible was observed for bunt reaction, indicating that Bt-10 was expressed in a partially dominant fashion. A polymorphic DNA fragment, amplified using RAPD, and previously shown to be linked to Bt-10 was sequenced and SCAR (sequence characterized amplified region) primers devised. However, SCAR primers failed to amplify the polymorphic fragment. Restriction of PCR products with DraI revealed a polymorphic fragment of 490 bp resulting from a single base pair difference between lines possessing Bt-10 and those lacking the gene. As per the base pair difference, FSD and RSA primers were designed to generate a 275-bp polymorphic DNA fragment. Both 275- and 490-bp polymorphic fragments were present in all of the 22 cultivars known to carry Bt-10, and absent in all 16 cultivars lacking Bt-10. A 3:1 ratio was observed for presence: absence of the 275-bp marker in the F2 population. Using Southern analysis, the 490-bp fragment was effective in differentiating homozygous resistant plants from those heterozygous for Bt-10, based on its presence and the hybridization signal strength. A 1:2:1 resistant : heterozygous : susceptible ratio was also observed for the molecular marker and corresponded to 88% of the phenotypes deduced from the original F2 population. The molecular marker was estimated to be between 1.1 cM and 6.5 cM away from the Bt-10 resistance gene, based on the segregation analysis. Segregation analyses of Bt-10 and the 275-bp marker, evaluated in three different Canada Prairie Spring (CPS) wheat populations, demonstrated a segregation ratio of 3:1 for the molecular marker in two of the populations. These results demonstrated that the PCR marker system using the FSD and RSA primer pair permitted a rapid and reliable identification of individual lines carrying the Bt-10 gene for resistance to common bunt.  相似文献   

17.
The sex-specific molecular marker is a useful gene resource for studying sex- determining mechanisms and controlling fish sex. Artificially produced male and female half-smooth tongue sole (Cynoglossus semilaevis) were used to screen sex-specific amplified fragment length polymorphism (AFLPs) molecular markers. The phenotypic sex of 28 tongue soles was determined by histological sectioning of gonads. The AFLP analysis of 15 females and 13 males via 64 primer combinations produced a total of 4681 scorable bands, of which 42.11% and 43.39% of bands were polymorphic in females and males, respectively. Seven female-specific AFLP markers were identified and designated as CseF382, CseF575, CseF783, CseF464, CseF136, CseF618, and CseF305, respectively. One female-specific AFLP marker (CseF382) was amplified, recovered from the gels, cloned, and sequenced (accession no. DQ487760). This female-specific AFLP marker was converted into a single-locus polymerase-chain reaction (PCR) marker of a sequence-characterized amplified region (SCAR). A simple PCR method of using the specific primers was developed for identifying genetic sex of half-smooth tongue sole. PCR products demonstrated that the initial 15 females produced the female-specific band of about 350 bp, but the initial 13 male individuals failed to produce the band. We also investigated the applicability of the PCR primers in other tongue sole individuals. The same female-specific fragment of about 350 bp was found in the additional 59 female individuals, but not in the additional 58 male individuals. This AFLP-based molecular sexing technique may have great application potential in elucidation of sex determination mechanisms and sex control in half-smooth tongue sole.  相似文献   

18.
Sex determination mechanisms in many crustacean species are complex and poorly documented. In the giant freshwater prawn, Macrobrachium rosenbergii, a ZW/ZZ sex determination system was previously proposed based on sex ratio data obtained by crosses of sex‐reversed females (neomales). To provide molecular evidence for the proposed system, novel sex‐linked molecular markers were isolated in this species. Amplified fragment length polymorphism (AFLP) using 64 primer combinations was employed to screen prawn genomes for DNA markers linked with sex loci. Approximately 8400 legible fragments were produced, 13 of which were uniquely identified in female prawns with no indication of corresponding male‐specific markers. These AFLP fragments were reamplified, cloned and sequenced, producing two reliable female‐specific sequence characterized amplified region (SCAR) markers. Additional individuals from two unrelated geographic populations were used to verify these findings, confirming female‐specific amplification of single bands. Detection of internal polymorphic sites was conducted by designing new primer pairs based on these internal fragments. The internal SCAR fragments also displayed specificity in females, indicating high levels of variation between female and male specimens. The distinctive feature of female‐linked SCAR markers can be applied for rapid detection of prawn gender. These sex‐specific SCAR markers and sex‐associated AFLP candidates unique to female specimens support a sex determination system consistent with female heterogamety (ZW) and male homogamety (ZZ).  相似文献   

19.
Bulk segregant analysis, random amplified polymorphic DNA (RAPD), and sequence characterized amplified region (SCAR) methods were used to identify sex‐linked molecular markers in the haploid‐diploid rhodophyte Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira. One hundred and eighty 10 bp primers were tested on three bulks of DNA: haploid males, haploid females, and diploid tetrasporophytes. Three RAPD primers (OPD15, OPG16, and OPN20) produced male‐specific bands; and one RAPD primer (OPD12), a female‐specific band. The sequences of the cloned putative sex‐specific PCR fragments were used to design specific primers for the female marker SCAR‐D12‐386 and the male marker SCAR‐G16‐486. Both SCAR markers gave unequivocal band patterns that allowed sex and phase to be determined in G. chilensis. Thus, all the females presented only the female band, and all the males only the male band, while all the tetrasporophytes amplified both male and female bands. Despite this sex‐specific association, we were able to amplify SCAR‐D12‐386 and SCAR‐G16‐486 in both sexes at low melting temperature. The differences between male and female sequences were of 8%–9% nucleotide divergence for SCAR‐D12‐386 and SCAR‐G16‐486, respectively. SCAR‐D12‐386 and SCAR‐G16‐486 could represent degenerated or diverged sequences located in the nonrecombining region of incipient sex chromosomes or heteromorphic sex chromosomes with sequence differences at the DNA level such that PCR primers amplify only one allele and not the other in highly specific PCR conditions. Seven gametic progenies composed of 19 males, 19 females, and the seven parental tetrasporophytes were analyzed. In all of them, the two SCAR markers segregated perfectly with sexual phenotypes.  相似文献   

20.
The random amplified polymorphic DNA (RAPD) molecular marker technique was used to determine the sex of Calamus simplicifolius C. F. Wei In the present study, DNA samples were extracted individually from 10 male and 10 female plants. After a total of 1 040 decamer primers had been tested, an approximate 500-bp male-specific DNA fragment was generated with the S1443 primer. It is feasible to identify sex at the early stages of plant life, which is beneficial for improving breeding programs of this dioecious species. In addition, we have obtained a proper RAPD protocol that is useful for other species of rattan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号