首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

2.
NMR and CD data have previously shown the formation of the T(4) tetraloop hairpin in aqueous solutions, as well as the possibility of the B-to-Z transition in its stem in high salt concentration conditions. It has been shown that the stem B-to-Z transition in T(4) hairpins leads to S (south)- to N (north)-type conformational changes in the loop sugars, as well as anti to syn orientations in the loop bases. In this article, we have compared by means of UV absorption, CD, Raman, and Fourier transform infrared (FTIR), the thermodynamic and structural properties of the T(4) and A(4) tetraloop hairpins formed in 5'-d(CGCGCG-TTTT-CGCGCG)-3' and 5'-d(CGCGCG-AAAA-CGCGCG)-3', respectively. In presence of 5M NaClO(4), a complete B-to-Z transition of the stems is first proved by CD spectra. UV melting profiles are consistent with a higher thermal stability of the T(4) hairpin compared to the A(4) hairpin. Order-to-disorder transition of both hairpins has also been analyzed by means of Raman spectra recorded as a function of temperature. A clear Z-to-B transition of the stem has been confirmed in the T(4) hairpin, and not in the A(4) hairpin. With a right-handed stem, Raman and FTIR spectra have confirmed the C2'-endo/anti conformation for all the T(4) loop nucleosides. With a left-handed stem, a part of the T(4) loop sugars adopt a N-type (C3'-endo) conformation, and the C3'-endo/syn conformation seems to be the preferred one for the dA residues involved in the A(4) tetraloop.  相似文献   

3.
Raman spectra of poly(dG-dC) . poly(dG-dC) in D2O solutions of high (4.0M NaCl) and low-salt (0.1M NaCl) exhibit differences due to different nucleotide conformations and secondary structures of Z and B-DNA. Characteristic carbonyl modes in the 1600-1700 cm-1 region also reflect differences in base pair hydrogen bonding of the respective GC complexes. Comparison with A-DNA confirms the uniqueness of C = O stretching frequencies in each of the three DNA secondary structures. Most useful for qualitative identification of B, Z and A-DNA structures are the intense Raman lines of the phosphodiester backbone in the 750-850 cm-1 region. A conformation-sensitive guanine mode, which yields Raman lines near 682, 668, or 625 cm-1 in B (C2'-endo, anti), A (C3'-endo, anti) or Z (C3'-endo, syn) structures, respectively, is the most useful for quantitative analysis. In D2O, the guanine line of Z-DNA is shifted to 615 cm-1, permitting its detection even in the presence of proteins.  相似文献   

4.
The partially self-complementary synthetic DNA oligonucleotide d(CG)5T4(CG)5 has been studied by using 1H and 31P NMR and circular dichroism. Results show that, under low-salt conditions (120 mM NaCl buffer), an intramolecular hairpin loop exists in which the double-helical stem region is B-form and the thymidine loop residues have predominantly southern (C2'-endo) sugar conformations. The thymidine glycosidic torsion angles are intermediate between syn and anti or exist as an equilibrium mixture of residues in the two extremes. NOESY data indicate that the structure of the loop region is very similar to that found for d(CG)2T4(CG)2 [Hare, D. R., & Reid, B. R. (1986) Biochemistry 25, 5341-5350]. Under high-salt conditions (6 M NaClO4 buffer), the dominant form (approximately equal to 85%) is an intramolecular hairpin structure in which the stem region forms a Z-form double helix. As in the B-form, the loop thymidine residues are intermediate between the syn and anti conformations or exist as an equilibrium mixture of the two, but the thymidine sugar conformations differ in that they are biased toward northern (C3'-endo) conformations.  相似文献   

5.
Poly d(A-C).poly d(G-T) structures have been studied in solution by Raman spectroscopy, in presence of Na+, Mn2+ and Ni2+ counterions. Increase of the Na+ concentration or addition of Mn2+ ions up to 1M MnCl2 does not modify the B geometry of the polynucleotide. On the contrary, in conditions of low water activity (4M NaCl), the presence of small amounts of nickel ions (65 mM) induces a left-handed geometry of the DNA. The shift of the guanine line located at 682 cm-1 in B form to 622 cm-1 reflects unambiguously the C2'-endo/anti-greater than C3'-endo/syn reorientation of the deoxyribose-purine entities. Moreover modifications in the phosphate backbone lines indicate that the polymer is in a Z conformation. New or displaced lines corresponding to adenosine vibrations are correlated with the left-handed structure. An interaction of the Ni2+ ions specifically with the N7 site of purines, combined with a low water activity is necessary to promote the B-greater than Z transition.  相似文献   

6.
Raman spectroscopic analysis of the secondary structure of the crystalline restriction endonuclease EcoRI, the oligonucleotide d(TCGCGAATTCGCG) in solution, and the corresponding crystalline EcoRI-oligonucleotide complex reveals structural differences between the complexed and uncomplexed protein and oligonucleotide components that appear to be linked to complex formation. Structural differences that are spectroscopically identified include (1) an increase in the population of furanose rings adopting the C3'-endo conformation and (2) spectroscopically observed changes in base stacking which are probably associated with the crystallographically observed distortion of the phosphate backbone about positions C(3)-G(4) and C(9)-G(10) and unwinding between the symmetry-related segments GAA-TTC which make up the central recognition core (McClarin et al., 1986). Changes in base stacking due to distortions and unwinding along the oligonucleotide result in differences in the base vibrational region between the spectra of the complex and the oligonucleotide in solution. The spectroscopic analysis indicates that the C2'-endo population is similar for the oligonucleotide in solution and in the complex. The additional C3'-endo population in the complex appears to arise from the conversion of rings adopting alternative conformations such as C1'-exo and O1'-endo. Analysis of the vibrational bands derived from guanine indicates that the population of guanine residues associated with furanose rings in a C2'-endo conformation is similar for the oligonucleotide in solution and in the crystalline complex. This implies that the increase in C3'-endo population is not associated with guanine residues. Large conformational distortions such as those observed in the crystal distortions are not observed in either the crystal or the solution of the oligomer d(CGCGAATTCGCG).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Normal coordinate analysis of the adenosine and thymidine residues involved in the right- and left-handed conformations of oligonucleotides and polynucleotides has been performed. The valence force field, employed in this work, allowed recently to reproduce the vibrational spectra of 2'-deoxythymidine and 2'-deoxyadenosine. The calculated wavenumbers based on a non-redundant set of internal coordinates have been compared to the Raman and infrared peak positions arising from A, B, C, D and Z conformations, in the 1550-1250 cm-1 and 800-600 cm-1 spectral regions: i.e. characteristic of adenosine and thymidine residues. Moreover, a systematic study has been performed on the evolution of the vibrational wavenumbers as a function of the glycosidic angle (chi) and the sugar pucker conformation.  相似文献   

9.
The laser-Raman spectra of crystalline d(CpGpCpGpCpG) and of aqueous poly(dG-dC).poly(dG-dC) in high salt (4M NaCl) and low salt (0.1M NaCl) solutions have been measured and compared. The spectra of the crystal and the high-salt solution show a striking congruence, which indicates clearly that the high-salt form of the aqueous polymer has the left-handed Z-DNA structure of the crystalline oligomer. These two spectra differ substantially from that of the low-salt form of the polymer, which has been found previously to have spectral characteristics of the B-form of DNA. The high salt spectrum shows a unique line due to guanine residues at 625 cm-1 which should be useful for qualitative and possibly quantitative assessment of the amount of Z-structure present in a sample of DNA.  相似文献   

10.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

11.
Abstract

A normal coordinate analysis has been carried out on guanosine and cytidine residues appearing in oligo and polynucleotides by using a simplified valence force field that allows the vibrational spectra of 5′-dGMP and 2′-deoxycytidine molecules to be reproduced. The role of both C2′-endo and C3′-endo conformations on sugar pucker, as well as that of glycosidic torsion angle (χ), on several characteristic vibration modes of these residues have been studied. The present calculations based on a non-redundant set of internal coordinates preserving the harmonic approximation of the potential field, allows us to explain quite satisfactorily the modifications of the vibrational spectra in the 1550-1250 cm?1 and 785-500 cm?1 regions, when the right → left-handed conformational transition occurs.  相似文献   

12.
Raman spectra were obtained from single crystals of [d(CGCATGCG)]2 and [d(m5CGTAm5CG)]2, both of which incorporate A-T pairs into Z-DNA structures and contain C2'-endo/syn conformers of deoxyguanosine at the oligonucleotide ends. Correlation with x-ray results permits the following Raman assignments for nucleoside conformers: C3'-endo/syn G, 623 +/- 1; C2'-endo/syn G, 671 +/- 2; C2'-endo/anti C, 782 +/- 1; C2'endo/anti T, 650 +/- 5 and ca. 750; C3'-endo/syn A, 729 +/- 1 cm-1. These results show that (i) the 670 cm-1 line of syn G is highly sensitive to the change from C3'-endo to C2'-endo pucker, (ii) the 729 cm-1 line of A is affected neither by furanose pucker nor glycosidic bond orientation and (iii) the 1200-1500 cm-1 region of the Raman spectrum of the A-T double helix is greatly altered by the B-to-Z transition. Conformation sensitive Raman frequencies in the 850-1700 cm-1 region are identified for both octamer and hexamer, and the Z-to-B transition of each is monitored by spectral changes which occur upon dissolving the crystal in H2O solution.  相似文献   

13.
The B to Z conformational transition of (dG-dC)n.(dG-dC)n and a 157 bp DNA restriction fragment were followed using Raman spectroscopy. The 157 bp DNA has a 95 bp segment from the E. coli lactose operon sandwiched between 26 and 32 bp of (dC-dG) sequences. Raman spectra of the DNAs were obtained at varying sodium chloride concentrations through the region of the transition. A data analysis procedure was developed to subtract the background curves and quantify Raman vibrational bands. Profiles of relative intensity vs. sodium chloride concentration are shown for bands at 626, 682, 831-833 and 1093 cm-1. Both (dG-dC)n.(dG-dC)n and the 157 bp DNA show changes in the guanine vibration at 682 cm-1 and backbone band at 831-3 cm-1 preceding a highly cooperative change in the 1093 cm-1 PO2- vibration. This result indicates that there are at least two conformational steps in the B to Z conformational pathway. We review the effect of the (dC-dG) portion of the 157 bp DNA on the 95 bp segment. Comparison of Raman spectra of the 157 bp DNA, the 95 bp fragment and (dG-dC)n.(dG-dC)n indicate that in 4.5 M NaCl the (dC-dG) segments are in a Z-conformation. Base stacking in the 95 bp portion of the 157 bp DNA appears to maintain a B-type conformation. However, a substantial portion of this region no longer has a B-type backbone vibration.  相似文献   

14.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

15.
The conformational changes of poly(d2NH2A-dT) in aqueous solution, induced by increasing the NaCl concentration from 0.1M to 4M, have been monitored by ultraviolet resonance Raman spectroscopy, in using the 222-, 257- and 281 nm excitation wavelengths. These changes have been interpreted in comparing the polymer spectra to those of the mononucleotide compounds on one hand, and to those of other alternating purine-pyrimidine polymers on the other hand, i.e. poly(dG-dC) and poly(dA-dT) which showed a B to Z transition in going from low- to high salt concentrations. The high salt poly(d2NH2A-dT) spectra do not show any Raman marker line of the Z conformation. The spectroscopic results indicate that most of the ribose puckering goes from C2'-endo/anti to C3'-endo/anti in increasing the salt concentration. In addition the base stacking interactions, to which the resonance Raman effect is very sensitive, are not drastically changed upon salt variations. Thus the high salt structure of poly(d2NH2A-dT) remains a right-handed helix, likely under a dominant A conformation.  相似文献   

16.
Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T)   总被引:3,自引:0,他引:3  
Helical structures of double-stranded poly[d(A-T)] in solution have been studied by Raman spectroscopy. While the classical right-handed conformation B-type spectra are obtained in the case of sodium chloride solutions, a Z-form Raman spectrum is observed by addition of nickel ions at high sodium concentration, conditions in which the inversion of the circular dichroic spectrum of poly[d(A-T)] is detected, similar to that observed for high-salt poly[d(G-C)] solutions [Bourtayre, P., Liquier, J., Pizzorni, L., & Taillandier, E. (1987) J. Biomol. Struct. Dyn. 5, 97-104]. The characterization of the Z-form spectrum of poly[d(A-T)] is proposed by comparison with previously obtained characteristic Raman lines of Z-form poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)] solutions and of d(CG)3 and d(CGCATGCG) crystals [Thamann, T. J., Lord, R. C., Wang, A. H.-J., & Rich, A. (1981) Nucleic Acids Res. 9, 5443-5457; Benevides, J. M., Wang, A. H.-J., van der Marel, G. A., van Boom, J. H., Rich, A., & Thomas, G. J., Jr. (1984) Nucleic Acids Res. 14, 5913-5925]. Detailed spectroscopic data are presented reflecting the reorientation of the purine-deoxyribose entities (C2'-endo/anti----C3'-endo/syn), the modification of the phosphodiester chain, and the adenosine lines in the 1300-cm-1 region. The role played by the hydrated nickel ions in the B----Z transition is discussed.  相似文献   

17.
Infrared spectra of the B and Z forms of poly(dG-dC).poly(dG-dC) are presented. Experimental assignments relative to certain vibration modes have been confirmed by calculation based on the GF-Wilson method. The calculated results show that only the geometry change between B and Z forms, is responsible for the observed modifications in the vibrational spectra.  相似文献   

18.
Observations of Raman spectra of various nucleic acids indicate that the guanine ring breathing frequency is sensitive to the internal rotation angle around the glycosidic bond and to the conformation of the five-membered ring of the ribose residue that is directly connected with the guanine residue in question. It is found that 682 cm-1 for C2'-endo-anti, at 665 cm-1 for C3'-endo-anti, and at 625 cm-1 for C3'-endo-syn. A DNA octamer d(GpGpApApTpTpCpC) shows, in its aqueous solution, a broad Raman band at 680 cm-1 with a tail at 670 cm-1. This fact suggests that the guanosine residues in this oligomer take primarily C2'-endo-anti conformation but an appreciable amount of fluctuation of the ribose ring structure towards C3'-endo is involved.  相似文献   

19.
We have studied the hydration and dynamics of RNA C2'-OH in a DNA. RNA hybrid chimeric duplex [d(CGC)r(aaa)d(TTTGCG)](2). Long-lived water molecules with correlation time tau(c) larger than 0.3 ns were found close to the RNA adenine H2 and H1' protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA-DNA junction but not to the other two thymine bases (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA-DNA junction adopts an O4'-endo sugar conformation (intermediate between B-form and A-form), while the other DNA residues including 3C in the DNA-RNA junction, adopt C1'-exo or C2'-endo conformations (in the B-form domain). Based on the NOE cross-peak patterns, we have found that RNA C2'-OH tends to orient toward the O3' direction, forming a possible hydrogen bond with the 3'-phosphate group. The exchange rates for RNA C2'-OH were found to be around 5-20 s(-1), compared to 26.7(+/-13.8) s(-1) reported previously for the other DNA.RNA hybrid duplex. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)](2), which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The distinct hydration patterns of the RNA adenine H2 and H1' protons and the DNA 7T methyl group in the hybrid segment, as well as the orientation and dynamics of the RNA C2'-OH protons, may provide a molecular basis for further understanding the structure and recognition of DNA.RNA hybrid and chimeric duplexes.  相似文献   

20.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号