首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Acinetobacter sp. utilized the [ring-14C]dehydropolymer of coniferyl alcohol (DHP) (sp. act. 1.4 × 104 dpm/mg), 14C-labelled teakwood lignin (sp. act. 2.5 × 104 dpm/mg), guaiacolglyceryl ether, 2-methoxy-4-formylphenoxyacetic acid, p-benzyloxyphenol, dehydrodivanillyl alcohol, dehydrodiisoeugenol, veratrylglycerol--guaiacyl ether, conidendrin, black liquor lignin and indulin as sole carbon sources. The bacterium produced p-coumaric acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid and catechol as intermediates from lignins. Acinetobacter sp. produced catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase during the degradation of lignins. Correspondence to: A. Mahadevan  相似文献   

2.
An Acinetobacter sp. utilized 2-methoxy-4-formylphenoxyacetic acid, dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin as sole carbon source. It also degraded 14C-labelled DHP lignin and teakwood lignin. Vanillic acid, protocatechuic acid and catechol were separated from 2-methoxy-4-formylphenoxyacetic acid grown cultures. Both protocatechuic acid and catechol were formed from dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin. On the dimeric lignin model substances this Acinetobacter sp. produced protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase.  相似文献   

3.
Acinetobacter sp. evolved 14CO2 from 14C-(ring)DHP lignin and 14C-teakwood lignin. Veratrylglycerol-beta-guaiacyl ether, a lignin model compound with beta-o-4 linkage was cleaved by Acinetobacter sp. Veratrylglycerol-beta-guaiacyl ether into 2(o-methoxyphenoxy) ethanol and veratrylalcohol 2(o-methoxyphenoxy) ethanol was degraded to guaiacol and then to catechol whereas veratrylalcohol was converted to veratraldehyde, veratric acid, vanillic acid, protocatechuic acid and catechol. Both catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected in veratrylglycerol-beta-guaiacyl ether grown cultures.  相似文献   

4.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

5.
Degradation of p-benzyloxyphenol by Acinetobacter sp.   总被引:1,自引:0,他引:1  
Abstract Acinetobacter sp. utilized p -benzyloxyphenol as sole carbon source and degraded it to p -hydroxybenzaldehyde, p -hydroxybenzoic acid, protocatechuic acid and catechol. The intermediates were identified by paper chromatography, TLC, IR, GC and HPLC. Acinetobacter sp. produced protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase during the degradation of p -benzoloxyphenol.  相似文献   

6.
Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15 μM) and D3 for MhpB (IC50 110 μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1 mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde.  相似文献   

7.
Streptomyces setonii strain 75Vi2 was grown at 45 degrees C in liquid media containing yeast extract and trans-cinnamic acid, p-coumaric acid, ferulic acid, or vanillin. Gas chromatography, thin-layer chromatography, and mass spectrometry showed that cinnamic acid was catabolized via benzaldehyde, benzoic acid, and catechol; p-coumaric acid was catabolized via p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and protocatechuic acid; ferulic acid was catabolized via vanillin, vanillic acid, and protocatechuic acid. When vanillin was used as the initial growth substrate, it was catabolized via vanillic acid, guaiacol, and catechol. The inducible ring-cleavage dioxygenases catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected with an oxygen electrode in cell-free extracts of cultures grown in media with aromatic growth substrates and yeast extract.  相似文献   

8.
An isolated yeast strain was grown aerobically on phenol as a sole carbon source up to 24 mM; the rate of degradation of phenol at 30 degrees C was greater than other microorganisms at the comparable phenol concentrations. This microorganism was further identified and is designated Candida albicans TL3. The catabolic activity of C. albicans TL3 for degradation of phenol was evaluated with the K(s) and V(max) values of 1.7 +/- 0.1 mM and 0.66 +/- 0.02 micromol/min/mg of protein, respectively. With application of enzymatic, chromatographic and mass-spectrometric analyses, we confirmed that catechol and cis,cis-muconic acid were produced during the biodegradation of phenol performed by C. albicans TL3, indicating the occurrence of an ortho-fission pathway. The maximum activity of phenol hydroxylase and catechol-1,2-dioxygenase were induced when this strain grew in phenol culture media at 22 mM and 10 mM, respectively. In addition to phenol, C. albicans TL3 was effective in degrading formaldehyde, which is another major pollutant in waste water from a factory producing phenolic resin. The promising result from the bio-treatment of such factory effluent makes Candida albicans TL3 be a potentially useful strain for industrial application.  相似文献   

9.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

10.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

11.
Nine phenolic compounds were metabolized by the soft rot fungus Lecythophora hoffmannii via protocatechuic acid and subsequently cleaved by protocatechuate 3,4-dioxygenase as determined by oxygen uptake, substrate depletion, and ring cleavage analysis. Catechol was metabolized by catechol 1,2-dioxygenase. Fungal utilization of these aromatic compounds may be important in the metabolism of wood decay products.  相似文献   

12.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

13.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

14.
This study aimed to characterization of catechol 1,2-dioxygenase from a Gram-negative bacterium, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. Strain designated as N6, was isolated from the activated sludge samples of a sewage treatment plant at Bentwood Furniture Factory Jasienica, Poland. Morphology, physio-biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicate that strain belongs to Pseudomonas putida. When cells of strain N6 grown on protocatechuate or 4-hydroxybenzoic acid mainly protocatechuate 3,4-dioxygenase was induced. The activity of catechol 1,2-dioxygenase was rather small. The cells grown on benzoic acid, catechol or phenol showed high activity of only catechol 1,2-dioxygenase. This enzyme was optimally active at 35 °C and pH 7.4. Kinetic studies showed that the value of Km and Vmax was 85.19 ??M and 14.54 ??M min−1 respectively. Nucleotide sequence of gene encoding catechol 1,2-dioxygenase in strain N6 has 100% identity with catA genes from two P. putida strains. The deduced 301-residue sequence of enzyme corresponds to a protein of molecular mass 33.1 kDa. The deduced molecular structure of the catechol 1,2-dioxygenase from P. putida N6 was very similar and characteristic for the other intradiol dioxygenases.  相似文献   

15.
Rhodococcus sp. strain DK17 is known to metabolize o-xylene and toluene through the intermediates 3,4-dimethylcatechol and 3- and 4-methylcatechol, respectively, which are further cleaved by a common catechol 2,3-dioxygenase. A putative gene encoding this enzyme (akbC) was amplified by PCR, cloned, and expressed in Escherichia coli. Assessment of the enzyme activity expressed in E. coli combined with sequence analysis of a mutant gene demonstrated that the akbC gene encodes the bona fide catechol 2,3-dioxygenase (AkbC) for metabolism of o-xylene and alkylbenzenes such as toluene and ethylbenzene. Analysis of the deduced amino acid sequence indicates that AkbC consists of a new catechol 2,3-dioxygenase class specific for methyl-substituted catechols. A computer-aided molecular modeling studies suggest that amino acid residues (particularly Phe177) in the beta10-beta11 loop play an essential role in characterizing the substrate specificity of AkbC.  相似文献   

16.
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20–80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.  相似文献   

17.
Catabolism of Substituted Benzoic Acids by Streptomyces Species   总被引:17,自引:13,他引:4       下载免费PDF全文
Four thermotolerant actinomycetes from soil, identified as Streptomyces albulus 321, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. V7, were grown at 45°C in media containing either benzoic acid or hydroxyl- and methoxyl-substituted benzoic acids as the principal carbon sources. Benzoic acid was converted to catechol; p-hydroxybenzoic, vanillic, and veratric acids were converted to protocatechuic acid; and m-hydroxybenzoic acid was converted to gentisic acid. Catechol, protocatechuic acid, and gentisic acid were cleaved by catechol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase, and gentisate 1,2-dioxygenase, respectively. Dioxygenases appeared only in induced cultures. m-Hydroxybenzoic, m-anisic, and p-anisic acids were gratuitous inducers of dioxygenases in some strains. One strain converted vanillic acid to guaiacol.  相似文献   

18.
l-DOPA-2,3-dioxygenase from Streptomyces lincolnensis is a single-domain type I extradiol dioxygenase of the vicinal oxygen chelate superfamily and catalyzes the second step in the metabolism of tyrosine to the propylhygric acid moiety of the antibiotic, lincomycin. S. lincolnensisl-DOPA-2,3-dioxygenase was overexpressed, purified and reconstituted with Fe(II). The activity of l-DOPA-2,3-dioxygenase was kinetically characterized with l-DOPA (KM = 38 μM, kcat = 4.2 min−1) and additional catecholic substrates including dopamine, 3,4-dihydroxyhydrocinnamic acid, catechol and d-DOPA. 3,4-Dihydroxyphenylacetic acid was characterized as a competitive inhibitor of the enzyme (Ki = 2.2 mM). Site-directed mutagenesis and its effects on enzymatic activity were used to identify His14 and His70 as iron ligands.  相似文献   

19.
A eukaryotic catechol 1,2-dioxygenase (1,2-CTD) was produced from a Candida albicans TL3 that possesses high tolerance for phenol and strong phenol degrading activity. The 1,2-CTD was purified via ammonium sulfate precipitation, Sephadex G-75 gel filtration, and HiTrap Q Sepharose column chromatography. The enzyme was purified to homogeneity and found to be a homodimer with a subunit molecular weight of 32,000. Each subunit contained one iron. The optimal temperature and pH were 25°C and 8.0, respectively. Substrate analysis showed that the purified enzyme was a type I catechol 1,2-dioxygenase. This is the first time that a 1,2-CTD from a eukaryote (Candida albicans) has been characterized. Peptide sequencing on fragments of 1,2-CTD by Edman degradation and MALDI-TOF/TOF mass analyses provided information of amino acid sequences for BLAST analysis, the outcome of the BLAST revealed that this eukaryotic 1,2-CTD has high identity with a hypothetical protein, CaO19_12036, from Candida albicans SC5314. We conclude that the hypothetical protein is 1,2-CTD.  相似文献   

20.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号