首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Crustacean neuromuscular synapses arising from a single excitor axon are known to be well differentiated among different muscle fibers but little is known about their condition along single fibers. Focal recording techniques were used to examine the quantal transmitter release and facilitation properties of synapses in the single excitatory innervated distal accessory flexor muscle of the lobster, Homarus americanus. Synapses were reliably differentiated with respect to quantal output so that those located near the tendon end were 1.15–4.12 times greater than those at the opposite, exoskeletal end (p < 0.01, paired t-test). Regional differences were also seen in the amount of facilitation determined from twin pulse experiments. The fine structural basis for these differences was determined by serial section electron microscopy of 10-μm segments at each end to ensure that the area of focal recording was sampled. No quantitative differences were found in the terminals or synapses in the two regions. Instead, the physiological diversity was correlated with number and size of presynaptic dense bars. Thus, the tendon end had a greater number and larger mean surface area of dense bars compared to the exoskeletal end. This heterogeneity of excitatory multiterminal innervation is correlated with the axonal branching pattern. Thus, the main axon and the larger primary axon branches lie in close proximity to the tendon end of the muscle fibers, whereas the exoskeletal end is innervated by smaller secondary and tertiary axonal branches. This proximity to the large axonal branches of the higher quantal output synapses at the tendon end may be regulated by some neural influence including a timing of innervation and/or access to greater amounts of metabolites in the larger branches which may be conducive to forming high-output synapses.  相似文献   

2.
Changes in synaptic ultrastructure of the external geniculate body (EGB) were investigated in rats when a generator of pathologically intensified excitation (GPIE) was produced in this nucleus under the influence of tetanus toxin (TT). At the period of pronounced convulsive activity (24 h after TT injection), synaptic changes were estimated electronmicroscopically and with quantitative comparison of the materials from three groups. The first group included EGB synapses where TT was injected, the second group included contralateral EGB synapses and the third included EGB from the rats injected with inactivated toxin. By means of electron optic computer "Klassimat" average amount of round, flat, anomalous and adjacent to the presynaptic membrane vesicles was measured, average relative length of the active zone, average area of the presynaptic terminal, average relative section areas of pre- and postsynaptic cytoplasm condensation were estimated. In the area of GPIE formation, under the influence of TT, the increased amount of the vesicles related to the presynaptic membrane and that of flat vesicles were statistically significant. At the same time, the synaptic terminals, by the number of vesicles, have bimodal, while the control groups have unimodal distribution.  相似文献   

3.
Neuromuscular synapses from the single excitor axon to the proximal accessory flexor muscle (PAFM) was studied by serial section electron microscopy in a 1st stage larval (< 0.1 g) and a large adult (6.8 kg) lobster. The adult innervation of a lateral and a medial fiber, physiologically identified as low- and high-output respectively, was similar in the number and mean size of synapses but had significantly larger pre-synaptic dense bars for the high-output synapses. This correlation between quantal transmitter output and pre-synaptic dense bars and the appearance of exocytotic profiles along the dense bars strongly implicates the bars as active sites of transmitter release. Moreover the mature innervation is differentiated on the basis that the percentage of dense bar area to synaptic area is 9% for the low-output type compared to 22% for its high-output counterpart. In the larval PAFM the excitatory axon has not proliferated many branches and the innervation is therefore localized to groups of fibers in the lateral, medial and central regions of the muscle rather than to individual fibers. The lateral and medial sites of innervation representing putative low- and high-output types respectively (because of their location) do not differ in the size and number of pre-synaptic dense bars thereby suggesting a similarity in quantal synaptic transmission. However the percentage of dense bar area to synaptic area is 40% for the lateral site compared to 67% for the medial site. Since this is a trend mimicking the mature innervation it shows an early stage in the differentiation of low-and high-output synapses. Furthermore the main axon provides half of the total innervation in the larval PAFM but none in the adult thereby demonstrating a restructuring of multiterminal innervation.  相似文献   

4.
The ultrastructure of synapses from the molecular layer of parietal cortex was examined in two groups of unanesthetized rats. Rats of the first group were killed by stunning across the back of the neck, and those of the second group by the introduction of fixative through a preimplanted carotid artery cannula. Comparison of synapses from the two groups revealed that the distribution of synaptic types was the same. A larger percentage of synapses of the cannulated group has vesicle attachment sites than did those of the stunned group. The area and perimeter of the presynaptic terminals were significantly larger in synapses from the cannulated group, although the equivalent length of the postsynaptic thickening was less. The mean value for synaptic curvature was greater in the cannulated group, although over 80% of synapses in both groups had positive curvatures. No significant differences were found between the groups for the relationships between presynaptic terminal area and synaptic vesicle number, and between postsynaptic thickening length and synaptic curvature. Membrane recycling is suggested as a mechanism of accounting for the differences. The preponderance of postively-curved synapses in unanesthetized material may indicate a preponderance of functioning synapses.  相似文献   

5.
A morphometric analysis of the effect of differential experiences on synapses was performed in area CA3 of the rat hippocampus. Two methods of quantitation that used a superimposed lattice grid were employed. In the first method squares overlying synapses were measured as a proportion of the total number of squares scanned; in the second method intersections of lattice lines with synapses were counted as a proportion of the total length of lines. Both measures showed that rats which were housed in an enriched environment and received 10 weeks of training had a significant increase in total area of synaptic contacts compared to both nonenriched controls and a croup with increased motor activity.  相似文献   

6.
Quantitative electronmicroscopic studies have been made on the development of synapses in two modally different areas of the brain (V-VI layers of the visual and auditory cortex) in the rat and mouse Acomys cahirinus within first two weeks of their postnatal life. The density of synapses as well the relative amount of different types of synapses (symmetrical, asymmetrical, axo-spinal and synapses with large amounts of synaptic vesicles) were measured. It was shown that only in rats the development of synapses in the visual area usually is faster than in the auditory one.  相似文献   

7.
The small pyramidal neuron of the rat cerebral cortex   总被引:22,自引:0,他引:22  
Summary The pyramidal neurons in layers II and III of the rat parietal cortex have dendritic spines which form synapses with axon terminals. These synapses have synaptic clefts containing granular material that is concentrated towards the middle of the cleft to form a plaque. Only a small amount of dense material occurs on the cytoplasmic face of the presynaptic membrane, while there is a prominent dense layer, some 300 Å deep, in the dendritic spine. When the synapses formed by the smallest dendritic spines are examined in a frontal or en face plane of section this postsynaptic density has the form of a disc. In the synapses on larger spines, the disc is perforated to form a ring, and in the largest spines a number of perforations may occur. Because of these perforations, in larger synapses sections passing at right angles to the plane of the synaptic junction may show two or more separate postsynaptic densities. The possible significance of these findings is discussed.This work was supported by United States Public Health Service Research Grant No. NB-07016 from the National Institutes of Neurological Diseases and Blindness. The authors wish to express their sincere thanks to Lawrence McCarthy and Charmian Proskauer for their valuable assistance.  相似文献   

8.
Summary An examination using the electron microscope was carried out on the visceral ganglion of the marine bivalve mollusc Spisula solida. A range of fixation, block staining and section staining technique was used to study the structure of chemical synapses. Phosphotungstic acid employed as a block stain specifically stained pre- and post-synaptic structures associated with the membrane at synapses as well as one class of granular vesicle. The specialised contacts were however shown to be rare and in many parts completely absent. Many axons, containing several types of vesicle, were shown to be varicose and it is proposed that they may function in a similar way to the unspecialised varicose terminals of vertebrate autonomic neurons. The role of membrane specialisations in intercellular adhesion is discussed. This study concludes that many synapses may be morphologically unidentified using present criteria.  相似文献   

9.
Summary Representative examples of lowand high-output neuromuscular synapses between motoneuron and distal accessory flexor muscle of the lobster were selected on the basis of their mean quantal content, and subsequently analysed by serial section electron microscopy. The high-output terminal has twice as many synapses as the low-output terminal. However, since the mean surface area of synapses is significantly smaller in the high-output terminal than in the low-output one, the total synaptic surface area between the two types of terminals is similar. Also, though the high-output terminal possesses a greater number of presynaptic dense bodies than its low-output counterpart, the mean number per synapse is similar for the two terminals. The terminals, however, differ significantly in the size of their dense bodies. Thus both the mean and total surface area of these bodies is greater in the high-output terminal than in the low-output one. Moreover, the mean ratio of dense body area to synaptic area is significantly greater for the high-output terminal than for its low-output counterpart. This difference in dense body area parallels the difference in quantal content of synaptic transmission between the lowand high-output terminals and supports the hypothesis that presynaptic densities represent the ultrastructural correlates of transmitter mobilization and/or release.Supported by grants from the National Research Council and Muscular Dystrophy Association of Canada to C.K. Govind. D.E. Meiss is a post-doctoral fellow of the Muscular Dystrophy Association of Canada. We thank Eva Yap-Chung for her expert and unfailing technical assistance  相似文献   

10.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

11.
The development of multiterminal innervation from a single identifiable excitatory motoneuron to the lobster distal accessory flexor muscle (DAFM) was studied by serial section electron microscopy. The number, size, and location of neuromuscular synapses and presynaptic dense bars within the peripheral branching pattern of the axon was determined in cross sections of the DAFM in 1st (24-hr-old)-, 4th (2-week-old)-, and 12th (1-year-old)-stage lobsters. The mean size of synapses remains fairly constant in these three stages but synaptic density, i.e., the number of synapses per unit length of fiber, increased more than 20-fold between the 1st and 4th stages and more than 5-fold between the 4th and 12th stages. Synaptic surface area per fiber length showed a parallel increase. Consequently there is a proliferation of synapses along the length of individual muscle fibers during primary development. Furthermore from the 1st stage where only a few fibers are innervated, synapses proliferate to many more fibers in the 4th and to all fibers in the 12th stage. The neuromuscular synapses are distributed in different proportions within the axonal branching pattern in the three stages. Based on the number and size of synapses and presynaptic dense bars, the main axon and primary branches provide almost equal amounts of innervation in the 1st stage. With further branching in the 4th stage, the main axon accounts for only 20–25% of the innervation; the primary branches for 45% and other finer branches the remainder. By the 12th-stage synapses are found only on branches other than the main axon and its primary offshoots. There is therefore a shift in innervation from the main axon to the primary branches and then to the finer branches during primary development. This shift in innervation involves the formation of new synaptic terminals and the restructuring of existing ones into axonal areas. In this way the multiterminal innervation arising from an identifiable motoneuron is remodeled.  相似文献   

12.
Summary The numerical density and frequency of perforated synapses in the molecular layer of rat parietal cortex have been determined using 4 procedures in an attempt to overcome problems associated with the size and complex three-dimensional shape of perforated synapses. The following procedures were compared: A, single-section analysis; B, adjacent-section analysis; C, semi-serial-section analysis; and D, complete serial-section analysis. All procedures made use of an unbiased counting rule.Estimates of the numerical density of perforated synapses ranged from 0.06 to 0.27×109 mm-3, and that of all synapses (non-perforated and perforated) from 1.88 to 2.50×109 mm-3. The frequency of perforated synapses varied from 4.5 to 18.0%. Procedures B (adjacent-section analysis) and D (complete serial-section analysis), neither of which utilize assumptions regarding the shape of synapses, produced comparable results (numerical density of perforated synapses 0.19–0.27×109 mm-3, and of all synapses 2.24–2.45×109 mm-3; frequency of perforated synapses 8.6–10.9%). The frequency of perforated synapses appeared to be underestimated by procedure A (single section analysis; 4.5%) and overestimated by C (semi-serial section analysis; 18%).It is concluded that adjacent-section analysis is the most efficient and effective procedure for determining the numerical density and frequency of complex particles, such as perforated synapses. There is, however, no significant difference in the performance of this procedure compared with that of single-section analysis, for determining the numerical density of synapses in general. Nevertheless, inherent problems of bias within the single-section procedure make the adjacent section method the procedure of choice.  相似文献   

13.
Inactivity produces increases in neurotransmitter release and synapse size.   总被引:19,自引:0,他引:19  
When hippocampal synapses in culture are pharmacologically silenced for several days, synaptic strength increases. The structural correlate of this change in strength is an increase in the size of the synapses, with all synaptic components--active zone, postsynaptic density, and bouton--becoming larger. Further, the number of docked vesicles and the total number of vesicles per synapse increases, although the number of docked vesicles per area of active zone is unchanged. In parallel with these anatomical changes, the physiologically measured size of the readily releasable pool (RRP) and the release probability are increased. Ultrastructural analysis of individual synapses in which the RRP was previously measured reveals that, within measurement error, the same number of vesicles are docked as are estimated to be in the RRP.  相似文献   

14.
Perforated synapses and plasticity   总被引:1,自引:0,他引:1  
Against a background of existing models relating perforated synapses to synaptic plasticity, the numerical density and frequency of perforated synapses in rat neocortex have been assessed from 1 d to 22 mo of age using the disector procedure, and changes in their morphology were assessed using 3-D computer reconstructions. The data point toward perforated and nonperforated synapses being separate synaptic populations from early in development, and with perforated synapses playing a part in the maintenance of neuronal postsynaptic density surface area from mid-adulthood onwards. This suggests that they play a crucial role in synaptic plasticity, although its nature may be different from that postulated by most recent workers.  相似文献   

15.
Electron microscopic study and quantitative analysis of the visual cortex synapses in 14, 30 and 60-day-old rats were performed after bilateral enucleation of newly-forn rats. A great amount of synapses of other functional systems was shown to be functioning in the area striata in addition to the synapses formed by specific visual afferents. Alterations in the synapses of the area striata of blind rats are developing gradually, achieving the greatest pronouncement in 60-day-old rats. These changes develop according to the type of atrophic process in connection with dysfunction. The atrophic alterations of the synapses were found both in axo-somatic and axo-dendritic synapses on the dendrite trunks and on the thorns. The alterations of synapses being concentrated in layer IV. The quantitative ratio of different kinds of atrophied synapses in the cross-section of the visual cortex was different suggesting the following conclusion about the distribution of the visual afferents. In layers I and III the visual afferents formed mostly axon-thorn contacts and less amount of axo-somatic and axo-dendritic synapses on the dendrite trunks. In layer IV they mainly formed axo-somatic and axo-thorn synapses and less amount of axo-dendritic ones on the dendrite trunks. In layers V and VI they mainly contact with the dendrite trunks and with the nervous cell bodies and more rarely with thorns.  相似文献   

16.
The mechanisms by which cortical neurons perform spatial and temporal integration of synaptic inputs are dependent, in large part, on the numbers, types, and distributions of their synapses. To further our understanding of these integrative mechanisms, we examined the distribution of synapses on identified classes of cortical neurons. Pyramidal cells in the cat motor cortex projecting either to the ipsilateral somatosensory cortex or to the spinal cord were labeled by the retrograde transport of horseradish peroxidase. Entire soma of selected corticocortical and corticospinal cells were examined using serial-section electron microscopy. The profiles of these somata and the synapses formed with each of these profiles were reconstructed from each thin section with a computer-aided morphometry system. All somatic synapses were of the symmetrical, presumably inhibitory type. For both cell types, these synapses were not homogeneously distributed over the somatic membrane, but were clustered at several discrete zones. The number and density of synapses on the somata of different corticocortical and corticospinal neurons were not significantly different. However, the density of these synapses was inversely correlated with the size of their postsynaptic somata. We discuss the significance of these findings to the integrative properties of cortical neurons.  相似文献   

17.
Z Gil  B W Connors  Y Amitai 《Neuron》1999,23(2):385-397
Thalamocortical (TC) synapses carry information into the neocortex, but they are far outnumbered by excitatory intracortical (IC) synapses. We measured the synaptic properties that determine the efficacy of TC and IC axons converging onto spiny neurons of layer 4 in the mouse somatosensory cortex. Quantal events from TC and IC synapses were indistinguishable. However, TC axons had, on average, about 3 times more release sites than IC axons, and the mean release probability at TC synapses was about 1.5 times higher than that at IC synapses. Differences of innervation ratio and release probability make the average TC connection several times more effective than the average IC connection, and may allow small numbers of TC axons to dominate the activity of cortical layer 4 cells during sensory inflow.  相似文献   

18.
In sheep, the control of tonic and surge GnRH secretion is sexually differentiated by testosterone in utero. However, GnRH neurons are not sexually dimorphic with respect to number, distribution, or gross morphology. Therefore, this study tested the hypothesis that prenatal steroids influence synaptic input to GnRH neurons. We compared the number of synapses on GnRH neurons from male, female, and androgenized female lambs (n = 5 each). Androgenized females were exposed to testosterone during mid-gestation. Yearling lambs were perfused, and GnRH neurons were visualized using the LR-1 antibody. Five to seven GnRH neurons from the rostral preoptic area in each animal were viewed at the ultrastructural level. Afferent synapses and glial ensheathment on each neuron were counted in a single section through the plane of the nucleus. GnRH neurons from females received approximately twice as many contacts (3.6 +/- 0.7 synapses/100 microm plasma membrane) as those from male lambs (1.6 +/- 0.3; p < 0.05), similar to previous reports in rats. In addition, the number of synapses on GnRH neurons from androgenized female lambs (1.5 +/- 0.5) was similar to that from male lambs, suggesting that prenatal steroids give rise to sex differences in synaptic input to GnRH neurons.  相似文献   

19.
The radial nerve cords of starfish and the central ganglia of a gastropod mollusc were examined for the presence of chemical synapses. No structures with the degree of specialization of synapses in the vertebrate CNS were observed. Presumed chemical synapses, which possessed slight but variable paramembrane densities, were examined with a tilting stage. This showed that such densities were frequently due to overlap of vesicle and axon membrane within the section, which were resolved at the correct angle of tilt. Many structures resembled desmosomes. The necessity for care in interpreting the structure of chemical synapses in invertebrates is emphasized.  相似文献   

20.
Quantitative-electron microscopic investigations have been performed on large morphologically mixed synapses in the oculomotor nucleus of the trout with the aim to get some hints at recycling processes of vesicle membranes. For this reason vesicle density of the presynaptic area and number of vesicle attachment sites of the presynaptic membrane of the active zones within these mixed contacts have been estimated in two different experimental groups. Furthermore, vesicle density near the unmyelinated axolemma of the axon terminal has been measured in both groups. The results obtained support the view that a recycling of vesicle membranes occurs in morphologically mixed synapses, probably also over the axolemma of the so-called extended extracellular spaces, which are interrupting the contact area between the two neuronal elements. The question of a recycling of gap-junction-vesicles has not been answered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号