共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Astral microtubules are not required for anaphase B in Saccharomyces cerevisiae 总被引:12,自引:10,他引:12 下载免费PDF全文
tub2-401 is a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. At 18 degrees C, tub2-401 cells are able to assemble spindle microtubules but lack astral microtubules. Under these conditions, movement of the spindle to the bud neck is blocked. However, spindle elongation and chromosome separation are unimpeded and occur entirely within the mother cell. Subsequent cytokinesis produces one cell with two nuclei and one cell without a nucleus. The anucleate daughter can not bud. The binucleate daughter proceeds through another cell cycle to produce a cell with four nuclei and another anucleate cell. With additional time in the cold, the number of nuclei in the nucleated cells continues to increase and the percentage of anucleate cells in the population rises. The results indicate that astral microtubules are needed to position the spindle in the bud neck but are not required for spindle elongation at anaphase B. In addition, cell cycle progression does not depend on the location or orientation of the spindle. 相似文献
3.
DBF8, an essential gene required for efficient chromosome segregation in Saccharomyces cerevisiae. 下载免费PDF全文
To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation. 相似文献
4.
Gerisch G Faix J Köhler J Müller-Taubenberger A 《Cell motility and the cytoskeleton》2004,57(1):18-25
While studying mitosis in Dictyostelium mutants with deficiencies in actin-binding proteins, we found that two of these proteins, cortexillin and Aip1, are required for the precise segregation of chromosomes. Atypical spindles and nuclei with varying DNA content indicate that mutants lacking cortexillin or Aip1 are genetically unstable. These aberrations are caused by the detachment and irregular reattachment of centrosomes to the nuclear surface. Live imaging showed how coalescing mitotic complexes give rise to a multipolar spindle, and how excess centrosomes can be eliminated by mitotic cleavage between anucleate and nucleated portions of a cell. We hypothesize that mutations in regulatory proteins of the actin network might be one cause of genetic instability of malignant tumor cells. 相似文献
5.
CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. 总被引:16,自引:2,他引:16 下载免费PDF全文
Z Xiao J T McGrew A J Schroeder M Fitzgerald-Hayes 《Molecular and cellular biology》1993,13(8):4691-4702
By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature. 相似文献
6.
7.
MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae 总被引:7,自引:3,他引:7 下载免费PDF全文
《The Journal of cell biology》1993,123(2):387-403
The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins. 相似文献
8.
BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges 总被引:5,自引:0,他引:5
Mutations in BLM cause Bloom's syndrome, a disorder associated with cancer predisposition and chromosomal instability. We investigated whether BLM plays a role in ensuring the faithful chromosome segregation in human cells. We show that BLM-defective cells display a higher frequency of anaphase bridges and lagging chromatin than do isogenic corrected derivatives that eptopically express the BLM protein. In normal cells undergoing mitosis, BLM protein localizes to anaphase bridges, where it colocalizes with its cellular partners, topoisomerase IIIalpha and hRMI1 (BLAP75). Using BLM staining as a marker, we have identified a class of ultrafine DNA bridges in anaphase that are surprisingly prevalent in the anaphase population of normal human cells. These so-called BLM-DNA bridges, which also stain for the PICH protein, frequently link centromeric loci, and are present at an elevated frequency in cells lacking BLM. On the basis of these results, we propose that sister-chromatid disjunction is often incomplete in human cells even after the onset of anaphase. We present a model for the action of BLM in ensuring complete sister chromatid decatenation in anaphase. 相似文献
9.
Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae 总被引:12,自引:0,他引:12
《The Journal of cell biology》1996,133(1):85-97
10.
NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae 总被引:35,自引:10,他引:25 下载免费PDF全文
《The Journal of cell biology》1993,121(3):503-512
A mutant, ndc10-1, was isolated by anti-tubulin staining of temperature- sensitive mutant banks of budding yeast. ndc10-1 has a defect chromosome segregation since chromosomes remains at one pole of the anaphase spindle. This produces one polyploid cell and one aploid cell, each containing a spindle pole body (SPD. NDC10 was cloned and sequenced and is identical to CBF2 (Jiang, W., J. Lechnermn and J. Carbon. 1993. J. Cell Biol. 121:513) which is the 110-kD component of a centromere DNA binding complex (Lechner, J., and J. Carbon. 1991. Cell. 61:717-725). NDC10 is an essential gene. Antibodies to Ndc10p labeled the SPB region in nearly all the cells examined including nonmitotic cells. In some cells with short spindles which may be in metaphase, staining was also observed along the spindle. The staining pattern and the phenotype of ndc10-1 are consistent with Cbf2p/Ndc10p being a kinetochore protein, and provide in vivo evidence for its role in the attachment of chromosomes to the spindle. 相似文献
11.
Ilana L Brito Fernando Monje-Casas Angelika Amon 《Cell cycle (Georgetown, Tex.)》2010,9(17):3611-3618
Lrs4 and Csm1, components of the monopolin complex, localize to the rDNA where they regulate rDNA maintenance and segregation. During meiosis, the complex also associates with kinetochores to bring about sister kinetochore co-orientation, an essential aspect of meiosis I chromosome segregation. We show here that the Lrs4-Csm1 complex associates with kinetochores during mitosis. This kinetochore localization is observed during anaphase and depends on the on the Mitotic Exit Network, a signaling cascade essential for the completion of mitosis. Furthermore, we find that Lrs4 and Csm1 are important for chromosome segregation fidelity. Our results reveal a previously unanticipated function for Lrs4-Csm1 in mitotic chromosome segregation.Key words: mitosis, monopolin, Lrs4, Csm1, kinetochore, Mitotic Exit Network, chromosome segregation 相似文献
12.
Brianna R King Janet B Meehl Tamira Vojnar Mark Winey Eric G Muller Trisha N Davis 《Genetics》2021,218(2)
The mitotic spindle is resilient to perturbation due to the concerted, and sometimes redundant, action of motors and microtubule-associated proteins. Here, we utilize an inducible ectopic microtubule nucleation site in the nucleus of Saccharomyces cerevisiae to study three necessary steps in the formation of a bipolar array: the recruitment of the γ-tubulin complex, nucleation and elongation of microtubules (MTs), and the organization of MTs relative to each other. This novel tool, an Spc110 chimera, reveals previously unreported roles of the microtubule-associated proteins Stu2, Bim1, and Bik1, and the motors Vik1 and Kip3. We report that Stu2 and Bim1 are required for nucleation and that Bik1 and Kip3 promote nucleation at the ectopic site. Stu2, Bim1, and Kip3 join their homologs XMAP215, EB1 and kinesin-8 as promoters of microtubule nucleation, while Bik1 promotes MT nucleation indirectly via its role in SPB positioning. Furthermore, we find that the nucleation activity of Stu2 in vivo correlates with its polymerase activity in vitro. Finally, we provide the first evidence that Vik1, a subunit of Kar3/Vik1 kinesin-14, promotes microtubule minus end focusing at the ectopic site. 相似文献
13.
14.
Lars Boeckmann Yoshimitsu Takahashi Wei-Chun Au Prashant K. Mishra John S. Choy Anthony R. Dawson May Y. Szeto Timothy J. Waybright Christopher Heger Christopher McAndrew Paul K. Goldsmith Timothy D. Veenstra Richard E. Baker Munira A. Basrai 《Molecular biology of the cell》2013,24(12):2034-2044
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation. 相似文献
15.
A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae 总被引:15,自引:5,他引:15 下载免费PDF全文
《The Journal of cell biology》1982,94(3):718-726
Methyl-benzimidazole-2-ylcarbamate (MBC) inhibits the mitotic cell cycle of Saccharomyces cerevisiae at a stage subsequent to DNA synthesis and before the completion of nuclear division (Quinlan, R. A., C. I. Pogson, and K, Gull, 1980, J Cell Sci., 46: 341-352). The step in the cell cycle that is sensitive to MBC inhibition was ordered to reciprocal shift experiments with respect to the step catalyzed by cdc gene products. Execution of the CDC7 step is required for the initiation of DNA synthesis and for completion of the MBC-sensitive step. Results obtained with mutants (cdc2, 6, 8, 9, and 21) defective in DNA replication and with an inhibitor of DNA replication (hydroxyurea) suggest that some DNA replication required for execution of the MBC-sensitive step but that the completion of replication is not. Of particular interest were mutants (cdc5, 13, 14, 15, 16, 17, and 23) that arrest cell division after DNA replication but before nuclear division since previous experiments had not been able to resolve the pathway of events in this part of the cell cycle. Execution of the CDC17 step was found to be a prerequisite for execution of the MBC- sensitive step; the CDC13, 16 and 23 steps are executed independently of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the CDC14 and 23 steps. These results considerably extend the dependent pathway of events that constitute the cell cycle of S. cerevisiae. 相似文献
16.
Anaphase B spindle elongation plays an important role in chromosome segregation. In the present paper, we discuss our model for anaphase B in Drosophila syncytial embryos, in which spindle elongation depends on an ip (interpolar) MT (microtubule) sliding filament mechanism generated by homotetrameric kinesin-5 motors acting in concert with poleward ipMT flux, which acts as an 'on/off' switch. Specifically, the pre-anaphase B spindle is maintained at a steady-state length by the balance between ipMT sliding and ipMT depolymerization at spindle poles, producing poleward flux. Cyclin B degradation at anaphase B onset triggers: (i) an MT catastrophe gradient causing ipMT plus ends to invade the overlap zone where ipMT sliding forces are generated; and (ii) the inhibition of ipMT minus-end depolymerization so flux is turned 'off', tipping the balance of forces to allow outward ipMT sliding to push apart the spindle poles. We briefly comment on the relationship of this model to anaphase B in other systems. 相似文献
17.
《Cell cycle (Georgetown, Tex.)》2013,12(17):3611-3618
Lrs4 and Csm1, components of the monopolin complex, localize to the rDNA where they regulate rDNA maintenance and segregation. During meiosis, the complex also associates with kinetochores to bring about sister kinetochore co-orientation, an essential aspect of meiosis I chromosome segregation. We show here that the Lrs4-Csm1 complex associates with kinetochores during mitosis. This kinetochore localization is observed during anaphase and depends on the on the Mitotic Exit Network, a signaling cascade essential for the completion of mitosis. Furthermore, we find that Lrs4 and Csm1 are important for chromosome segregation fidelity. Our results reveal a previously unanticipated function for Lrs4-Csm1 in mitotic chromosome segregation. 相似文献
18.
In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. 总被引:9,自引:3,他引:9 下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes. 相似文献
19.
Impaired chromosome segregation in plant anaphase after moderate hypomethylation of DNA 总被引:2,自引:0,他引:2
10?6 M and 10?5 M 5-azacytidine, demethylated around 9% and 17% of the 5-methylcytosine residues found in Allium cepa L. native DNA, respectively. Both treatments stimulated RNA synthesis in the cells of root meristems. On the other hand, the 10?5 M treatment gave rise to multiple chromosomal anomalies in mitosis before any fall in the mitotic index was detectable, but no chromosomal breaks were ever seen. Serious lesions involved in chromatids and segregation in anaphase were preferentially found after hypomethylation of DNA sequences replicated in the second half of the previous S period: (i) sister telomeres remained unresolved at the cell equator while kinetochores had reached the poles, (ii) whole unsegregated chromosomes were pulled to one of the poles by obviously disfunctional kinetochores, resulting in an unbalanced distribution of chromatids, (iii) unsegregated chromosomes in other cells remained at the spindle equator as if kinetochores were nonfunctional, while cytoplasmic division took place before their migration to the poles. Frequently, a growing cytokinetic plate randomly cut the unsegregated chromosomes, giving rise to aneuploid nuclei. These anaphase failures are a firm basis to explain why the 10?5 M treatment selectively depressed the rate of cell proliferation in these cells in the long run. On the other hand, if hypomethylation occurred at the first half of the previous S period, enlarged chromosomal segments were evident in most metaphases, while chromosome laggards and bridges were recorded in anaphase at rather similar frequencies after the different 5-azacytidine treatments. These data were consistently obtained both in the native mononucleate cells of meristems and in one subpopulation of synchronous cells labelled as binucleate by 5 mm caffeine. 相似文献
20.
Hideki Yokoyama Sofia Rybina Rachel Santarella-Mellwig Iain W. Mattaj Eric Karsenti 《The Journal of cell biology》2009,187(6):813-829
Production of RanGTP around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)–containing factors. Here, we show that the NLS protein ISWI, a known chromatin-remodeling ATPase, is a RanGTP-dependent microtubule (MT)-associated protein. Recombinant ISWI induces MT nucleation, stabilization, and bundling in vitro. In Xenopus culture cells and egg extract, ISWI localizes within the nucleus in interphase and on spindles during mitosis. Depletion of ISWI in egg extracts does not affect spindle assembly, but in anaphase spindle MTs disappear and chromosomes do not segregate. We show directly that ISWI is required for the RanGTP-dependent stabilization of MTs during anaphase independently of its effect on chromosomes. ISWI depletion in Drosophila S2 cells induces defects in spindle MTs and chromosome segregation in anaphase, and the cells eventually stop growing. Our results demonstrate that distinctly from its role in spindle assembly, RanGTP maintains spindle MTs in anaphase through the local activation of ISWI and that this is essential for proper chromosome segregation. 相似文献