首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition-mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition-induced cytotoxicity.  相似文献   

2.
BACKGROUND: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. CONCLUSION/RELEVANCE: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.  相似文献   

3.
4.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

5.
We previously established that NF-kappaB DNA binding activity is required for Sindbis Virus (SV)-induced apoptosis. To investigate whether SV induces nuclear translocation of NF-kappaB via the proteasomal degradation pathway, we utilized MG132, a peptide aldehyde inhibitor of the catalytic subunit of the proteasome. 20 microM MG132 completely abrogated SV-induced NF-kappaB nuclear activity at early time points after infection. Parallel measures of cell viability 48 h after SV infection revealed that 20 microM MG132 induced apoptosis in uninfected cells. In contrast, a lower concentration of MG132 (200 nM) resulted in partial inhibition of SV-induced nuclear NF-kappaB activity and inhibition of SV-induced apoptosis without inducing toxicity in uninfected cells. The specific proteasomal inhibitor, lactacystin, also inhibited SV-induced death. Taken together, these results suggest that the pro-apoptotic and anti-apoptotic functions of peptide aldehyde proteasome inhibitors such as MG-132 depend on the concentration of inhibitor utilized and expand the list of stimuli requiring proteasomal activation to induce apoptosis to include viruses.  相似文献   

6.
Evidence has accumulated showing that pharmacological inhibition of proteasome activity can both induce and prevent neuronal apoptosis. We tested the hypothesis that these paradoxical effects of proteasome inhibitors depend on the degree of reduced proteasome activity and investigated underlying mechanisms. Murine cortical cell cultures exposed to 0.1 microM MG132 underwent widespread neuronal apoptosis and showed partial inhibition of proteasome activity down to 30-50%. Interestingly, administration of 1-10 microM MG132 almost completely blocked proteasome activity but resulted in reduced neuronal apoptosis. Similar results were produced in cortical cultures exposed to other proteasome inhibitors, proteasome inhibitor I and lactacystin. Administration of 0.1 microM MG132 led to activation of a mitochondria-dependent apoptotic signaling cascade involving cytochrome c, caspase-9, caspase-3 and degradation of tau protein; such activation was markedly reduced with 10 microM MG132. High doses of MG132 prevented the degradation of inhibitor of apoptosis proteins (IAPs) cIAP and X chromosome-linked IAP, suggesting that complete blockade of proteasome activity interferes with progression of apoptosis. In support of this, addition of high doses of proteasome inhibitors attenuated apoptosis of cortical neurons deprived of serum. Taken together, the present results indicate that inhibition of proteasome activity can induce or prevent neuronal cell apoptosis through regulation of mitochondria-mediated apoptotic pathways and IAPs.  相似文献   

7.
Although the anti-tumour effects of paclitaxel result mainly from mitotic arrest, recent evidences suggest alternative mechanisms of cytotoxicity. Cell cycle, cell death, and gene expression assays were used to understand the molecular mechanisms of paclitaxel cytotoxicity in breast cancer cells. G2/M cell cycle arrest and cell death coincided with the regulation of genes involved in cell death, cell cycle control, microtubule-based processes, oxidative stress, and ubiquitin-proteasome system. Induction of proteasome genes was also correlated with an accumulation of protein for proteasome subunits. Furthermore, a schedule-dependent regulation of paclitaxel-induced cytotoxicity was observed after combining paclitaxel and the proteasome inhibitor MG132. Proteasome inhibition after paclitaxel exposure induced the highest rate of growth inhibition and apoptosis, with no effect on mitotic arrest. These findings give support to clinical combinations of taxanes with proteasome inhibitors, outlining the importance of considering the sequence when designing such regimens.  相似文献   

8.
Sheng X  Hu Z  Lü H  Wang X  Baluska F  Samaj J  Lin J 《Plant physiology》2006,141(4):1578-1590
The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and beta-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.  相似文献   

9.
Receptor-interacting protein kinase 3 (RIPK3) is a serine/threonine kinase with essential function in necroptosis. The activity of RIPK3 is controlled by phosphorylation. Once activated, RIPK3 phosphorylates and activates the downstream effector mixed lineage kinase domain-like (MLKL) to induce necroptosis. In certain situations, RIPK3 has also been shown to promote apoptosis or cytokine expression in a necroptosis and kinase-independent manner. The ubiquitin-proteasome system is the major pathway for selective degradation of cellular proteins and thus has a critical role in many cellular processes such as cell survival and cell death. Clinically, proteasome inhibition has shown promise as an anti-cancer agent. Here we show that the proteasome inhibitors MG132 and bortezomib activate the RIPK3-MLKL necroptotic pathway in mouse fibroblasts as well as human leukemia cells. Unlike necroptosis induced by classical TNF-like cytokines, necroptosis induced by proteasome inhibitors does not require caspase inhibition. However, an intact RIP homotypic interaction motif (RHIM) is essential. Surprisingly, when recruitment of MLKL to RIPK3 is restricted, proteasome inhibitors induced RIPK3-dependent apoptosis. Proteasome inhibition led to accumulation of K48-linked ubiquitinated RIPK3, which was partially reduced when Lys-264 was mutated. Taken together, these results reveal the ubiquitin-proteasome system as a novel regulatory mechanism for RIPK3-dependent necroptosis.  相似文献   

10.
This report reviews the current status of extensive efforts directed towards the interpretation of crosstalk between apoptosis and proteasome to understanding the molecular mechanism of anticancer agents targeting proteasome, with particular focus on MG132 and PS-341. The discovery that all cancer cells have retained the apoptotic death program has offered to the researchers new biochemical targets to design anticancer drugs. Moreover, the demonstration that proteasome inhibition induces apoptosis and sensitizes cancer cells to traditional tumoricidal agents has proposed the proteasome as an attractive target for development of new anticancer drugs. Since then, a number of both naturally occurring and synthetic inhibitors of the proteasome have been identified. The best characterized and most widely used inhibitors of the proteasome are the peptide aldehydes; among these MG132, due to its broad spectrum of action, low cost and rapid reversibility of action, still remains the first choice to study proteasome function in cell and tissue cultures. Recently, a very potent new class of selective and reversible proteasome inhibitors which contains an inhibitory boronate group has been described. PS-341 represent the first of this promising class of agents that could have application in cancer therapy and it is the only that has progressed to clinical trials.  相似文献   

11.
Although endoplasmic reticulum (ER) stress induction by some anticancer drugs can lead to apoptotic death of cancer cells, combination therapy with other chemicals would be much more efficient. It has been reported that proteasome inhibitors could induce cancer cell death through ER-stress. Our study, however, showed a differential mechanism of proteasome inhibitor-I (Pro-I)-induced cell death. Pro-I significantly enhanced apoptotic death of PC3 prostate cancer cells pretreated with tunicamycin (TM) while other signaling inhibitors against p38, mitogen activated kinase (MEK) and phosphatidyl-inositol 3-kinase (PI3K) did not, as evidenced by cell proliferation and cell cycle analyses. NF-κB inhibition by Pro-I, without direct effect on ER-stress, was found to be responsible for the TM-induced chemosensitization of PC3 cells. Moreover, TM-induced/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression was enhanced by Pro-I without change in GRP78 expression. CHOP knockdown by siRNA also showed a significant decrease in Pro-I chemosensitization. All these data suggest that although TM could induce both NF-κB activation and CHOP expression through ER-stress, both NF-κB inhibition and increased CHOP level by Pro-I are required for enhanced chemosensitization of PC3 prostate cancer cells. Thus, our study might contribute to the identification of anticancer targets against prostate cancer cells.  相似文献   

12.
13.
14.
Capsaicin is an active component of red pepper having an antiproliferative effect in a variety of cancer cells, which recent evidence suggests due to its ability to induce apoptosis. However, the molecular mechanisms through which capsaicin induces apoptosis are not well understood. Here we demonstrate that capsaicin‐induced apoptosis is mediated via the inhibition cellular proteasome function. Treatment of capsaicin to mouse neuro 2a cells results in the inhibition of proteasome activity in a dose‐ and time‐dependent manner that seems to correlate with its effect on cell death. The effect of capsaicin on cellular proteasome function is indirect and probably mediated via the generation of oxidative stress. Exposure of capsaicin also causes increased accumulation of ubiquitinated proteins as wells as various target substrates of proteasome like p53 and Bax and p27. Like many other classical proteasome inhibitors, capsaicin also triggers the intrinsic pathway of apoptosis involving mitochondria and induces neurite outgrowth. Our results strongly support for the use of capsaicin as an anticancer drug. J. Cell. Biochem. 109: 933–942, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Cisplatin is a highly effective chemotherapeutic drug acting as a DNA-damaging agent that induces apoptosis of rapidly proliferating cells. Unfortunately, cellular resistance still occurs. Mutations in p53 in a large fraction of tumor cells contribute to defects in apoptotic pathways and drug resistance. To uncover new strategies to eliminate tumors through a p53-independent pathway, we established a simplified model devoid of p53 to study cisplatin-induced regulated cell death, using the yeast Saccharomyces cerevisiae. We previously showed that cisplatin induces an active form of cell death accompanied by DNA condensation and fragmentation/degradation, but no significant mitochondrial dysfunction. We further demonstrated that proteasome inhibition, either with MG132 or genetically, increased resistance to cisplatin. In this study, we sought to determine how proteasome inhibition is important for cisplatin resistance by analyzing how it affects several phenotypes associated with the DNA damage response. We found MG132 does not seem to affect the activation of the DNA damage response or increase damage tolerance. Moreover, central modulators of the DNA damage response are not required for cisplatin resistance imparted by MG132. These results suggest the proteasome is involved in modulation of cisplatin toxicity downstream of DNA damage. Proteasome inhibitors can sensitize tumor cells to cisplatin, but protect others from cisplatin-induced cell death. Elucidation of this mechanism will therefore aid in the development of new strategies to increase the efficacy of chemotherapy.  相似文献   

16.
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.  相似文献   

17.
Dopamine (DA) and its metabolites have been implicated in the pathogenesis of Parkinson's disease. DA can produce reactive-oxygen species and DA-derived quinones such as aminochrome can induce proteasomal inhibition. We therefore examined the ability of DA and MG132 to induce apoptosis and proteasomal inhibition in N27 rat dopaminergic cells. DA (0-500 micromol/L, 0-24 h) and MG132 (0-5 micromol/L, 0-24 h) treated N27 cells resulted in time- and concentration-dependent apoptosis. To better define DA and MG132-induced apoptosis, the activation of initiator caspases 2 and caspase 9 and the executioner caspase 3 was investigated. Activation of caspase 2, caspase 9, and caspase 3 occurred early and prior to cell death. In addition, N-acetylcysteine (NAC) blocked DA but not MG132-induced apoptosis and mitochondrial membrane potential loss. NAC can react with both reactive-oxygen and quinoid metabolites and its inhibitory activity suggests a role for reactive species in DA-induced apoptosis. Proteasomal inhibition was detected after DA treatment in N27 cells which occurred prior to cell death and was abrogated by NAC. Our results implicate DA-derived reactive species in proteasomal inhibition and caspase-dependent apoptosis in N27 cells. The ability of endogenous DA-derived metabolites to induce proteasomal inhibition and apoptosis may contribute to the selective loss of dopaminergic neurons in Parkinson's disease.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号