首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single ethanol injection results in the increase of mono-, di- and tri-glicerides synthesis in rat liver, and also of the synthesis of apoprotein of very low density lipoproteins, their formation and secretion. Different uptake of pools of 14C-acetyl CoA, synthesized from injected 14C-acetate, and 3H-acetyl CoA, synthesized through metabolic pathways of 3H-leucine, indicates the compartmentalization of acetyl CoA in the synthesis of saturated and unsaturated fatty acids. 3H-acetyl CoA is more intensively used in the synthesis of unsaturated fatty acids than 14C-acetyl CoA synthesized from acetate. Ethanol increases the uptake of acetyl CoA, synthesized from acetate, for the synthesis of all the lipids, probably, for the expense of the increased synthesis of endogenous acetate in metabolic transformation of ethanol.  相似文献   

2.
Inhibition of rat liver acetyl CoA carboxylase by chloride   总被引:2,自引:0,他引:2  
The activity of acetyl CoA carboxylase in both crude and purified rat liver preparations was reduced in the presence of sodium or potassium chloride and increased in the presence of potassium acetate. The chloride inhibition was not competitive with bicarbonate. The use of Trischloride buffer did not alter the apparent pH optimum of the enzyme when compared with Tris-acetate buffer.  相似文献   

3.
Insulin resistance in skeletal muscle is present in humans with type 2 diabetes (noninsulin-dependent diabetes mellitus) and obesity and in rodents with these disorders. Malonyl CoA is a regulator of carnitine palmitoyl transferase I (CPT I), the enzyme that controls the transfer of long chain fatty acyl CoA into mitochondria where it is oxidized. In rat skeletal muscle, the formation of malonyl CoA is regulated acutely (in minutes) by changes in the activity of acetyl CoA carboxylase (ACC), the enzyme that catalyzes malonyl CoA synthesis. Acc activity can be regulated by changes in the concentration of citrate which is both an allosteric activator of Acc and a source of its precursor, cytosolic acetyl CoA. Increases in cytosolic citrate leading to an increase in the concentration of malonyl CoA occur when muscle is presented with insulin and glucose, or when it is made inactive by denervation. In contrast, exercise lowers the concentration of malonyl CoA, by activating an AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. Recently we have shown that the activity of malonyl CoA decarboxylase (MCD), an enzyme that degrades malonyl CoA, is also regulated by phosphorylation. The concentration of malonyl CoA in liver and muscle in certain circumstances correlates inversely with changes in MCD activity. This review will describe the current literature on the regulation of malonyl CoA/AMPK mechanism and its physiological function.  相似文献   

4.
In experimental rat liver perfusion we observed net production of free acetate accompanied by accelerated ketogenesis with long-chain fatty acids. Mitochondrial acetyl-CoA hydrolase, responsible for the production of free acetate, was found to be inhibited by the free form of CoA in a competitive manner and activated by reduced nicotinamide adenine dinucleotide (NADH). The conditions under which the ketogenesis was accelerated favored activation of the hydrolase by dropping free CoA and elevating NADH levels. Free acetate was barely metabolized in the liver because of low affinity, high K(m), of acetyl coenzyme A (acetyl-CoA) synthetase for acetate. Therefore, infused ethanol was oxidized only to acetate, which was entirely excreted into the perfusate. The acetyl-CoA synthetase in the heart mitochondria was much lower in K(m) than it was in the liver, thus the heart mitochondria was capable of oxidizing free acetate as fast as other respiratory substrates, such as succinate. These results indicate that rat liver produces free acetate as a byproduct of ketogenesis and may supply free acetate, as in the case of ketone bodies, to extrahepatic tissues as fuel.  相似文献   

5.
Acetyl CoA synthetase (E.C.6.2.1.1) and acetyl CoA hydrolase (E.C.3.1.2.1) activities were assayed in sub-cellular fractions of rabbit liver, heart and kidney homogenates. The intracellular location of acetyl CoA hydrolase was predominantly mitochondrial in all tissues, whereas that for acetyl CoA synthetase varied between the tissues studied. The relationship between location of enzyme activity and metabolism of acetate in different tissues is discussed.  相似文献   

6.
Acetaldehyde inhibited the oxidation of fatty acids by rat liver mitochondria as assayed by oxygen consumption and CO2 production. ADP-stimulated oxygen uptake was more sensitive to inhibition by acetaldehyde than was uncoupler-stimulated oxygen uptake, suggesting an effect of acetaldehyde on the electron transport-phosphorylation system. This conclusion is supported by the decrease in the respiratory control ratio, associated with fatty acid oxidation. Acetaldehyde depressed ketone body production as well as the content of acetyl CoA during palmitoyl-1-carnitine oxidation. Acetaldehyde was considerably more inhibitory toward fatty acid oxidation than was acetate. Therefore, the inhibition by acetaldehyde is not mediated by acetate, the direct product of acetaldehyde oxidation by the mitochondria. Oxygen uptake was depressed by acetaldehyde to a slightly, but consistently, greater extent in the absence of fluorocitrate, than in its presence. This suggests inhibition of oxygen consumption from β-oxidation to acetyl CoA and that which arises from citric acid cycle activity. The inhibition of fatty acid oxidation is not due to any effect on the activation or translocation of fatty acids into the mitochondria.The depression of the end products of fatty acid oxidation (CO2, ketones, acetyl CoA) as well as the greater sensitivity of palmitate oxidation compared to acetate oxidation, suggests inhibition by acetaldehyde of β-oxidation, citric acid cycle activity, and the respiratory-phosphorylation chain. Neither the activities of palmitoyl CoA synthetase nor carnitine palmitoyltransferase appear to be rate limiting for fatty acid oxidation.  相似文献   

7.
Methylamine metabolism in a pseudomonas species   总被引:16,自引:0,他引:16  
The mechanism by which a nonphotosynthetic bacterium Pseudomonas sp. (Shaw Strain MA) grows on the one-carbon source, methylamine, was investigated by comparing enzyme levels of cells grown on methylamine, to cells grown on acetate or succinate. Cells grown on methylamine have elevated levels of the enzymes serine hydroxymethyl transferase, serine dehydratase, malic enzyme, glycerate dehydrogenase and malate lyase (CoA acetylating ATP-cleaving). These enzymes, in conjunction with a constitutive glyoxylate transaminase, can account for the net conversion of two one-carbon units into acetyl CoA. Cells grown on acetate or methylamine, but not succinate, contain the enzyme isocitrate lyase; while cells grown on acetate or succinate, but not methylamine, contain significant levels of malate synthetase. These findings suggest that the acetyl CoA derived from one-carbon units in methylamine grown cells, condenses with oxalacetate to yield citrate and then isocitrate, followed by cleavage to succinate and glyoxylate. Thus, growth on methylamine is accomplished by the net synthesis of succinate from two molecules of methyamine and two molecules of CO2.  相似文献   

8.
Acetyl CoA carboxylase (ACC) catalyzes the carboxylation of acetyl CoA to form malonyl CoA. In skeletal muscle and heart, malonyl CoA functions to regulate lipid oxidation by inhibition of carnitine palmitoyltransferase-1, an enzyme which controls the entry of long chain fatty acids into mitochondria. We have found that several members of the cyclohexanedione class of herbicides are competitive inhibitors of rat heart ACC. These compounds constitute valuable reagents for drug development and the study of ACCbeta, a validated anti-obesity target.  相似文献   

9.
Monomeric [14C] methyl avidin was shown to bind to sodium dodecyl sulfate-denatured biotinyl proteins and remain bound through polyacrylamide gel electrophoresis which allowed their detection by fluorography. This method was used to show that purified rat liver acetyl CoA carboxylase contained two high molecular weight forms of the enzyme (MR = 241,000 and 252,000) while rapidly prepared, crude rat liver cytoplasm contained two larger molecular weight (MR = 257,000 and 270,000) forms. Thus, the enzyme had undergone substantial proteolysis during purification. The crude enzyme preparation also contained a smaller biotinyl protein (MR = 141,000) which is likely a proteolytic product of the larger forms of acetyl CoA carboxylase.  相似文献   

10.
11.
S Rous 《Life sciences》1976,18(6):633-638
Mice were injected intravenously with either 3-14C acetoacetate, 3-14C D-β-OH-butyrate or 1-14C acetate and the radioactivity of the fatty acids was measured. In liver, the values obtained for acetoacetate and β-OH-butyrate were identical and slightly higher than those for acetate. In carcass and adipose tissue, the values obtained for the β-OH-butyrate were lower than for the other two. In particle-free supernatant of liver and adipose tissue, almost no radioactivity was obtained from β-OH-butyrate, and only the acetoacetate and the acetate were used efficiently (in vitro studies). The incorporation of acetate and acetoacetate by adipose tissue supernatant is higher than that of citrate by liver supernatant.The cytoplasmic acetoacetyl CoA synthetase and acetyl CoA synthetase activity was found to be higher in adipose tissue than in the liver. β-OH-butyryl CoA synthetase was found to be much less active than the other two synthetases. Acetoacetyl CoA thiolase is very active in the mitochondria and supernatant of adipose tissue.Our results show that, in mice adipose tissue in particular, where the citrate-cleavage enzyme is not very active, acetyl CoA is probably transformed into acetoacetate so that it can leave the mitochondria to participate in cytoplasmic fatty acid synthesis.  相似文献   

12.
Reports of the existence of N-acetylseryl-tRNA in rat liver were reinvestigated. Methods were developed to permit recovery of N-acetylserine in a yield of 30--40% from N-acetylseryl-tRNA added to liver homogenates and cell-free incubations. [14C]Serine and [3H]acetate were injected into rats pretreated with iron and into rats after partial hepatectomy, and aminoacyl-tRNA was isolated from their livers. The amount of radioactivity associated with N-acetylserine in the amino acids released by hydrolysis from the aminoacyl-tRNA was negligible. No formation of N-acetylseryl-tRNA could be observed in incubations of acetyl CoA and seryl-tRNA or tRNA with enzyme fractions from liver of rats pretreated with iron. It is concluded that previous reports of the existence of N-acetylseryl-tRNA in rat liver are erroneous.  相似文献   

13.
The influence of residual ethanol on metabolism of food grade Gluconacetobacter xylinus I 2281 was investigated during controlled cultivations on 35 g/l glucose and 5 g/l ethanol. Bacterial growth was strongly reduced in the presence of ethanol, which is unusual for acetic acid bacteria. Biomass accumulated only after complete oxidation of ethanol to acetate and carbon dioxide. In contrast, bacterial growth initiated without delay on 35 g/l glucose and 5 g/l acetate. It was found that acetyl CoA was activated by the acetyl coenzyme A synthetase (Acs) pathway in parallel with the phosphotransacetylase (Pta)-acetate kinase (Ack) pathway. The presence of ethanol in the culture medium strongly reduced Pta activity while Acs and Ack remained active. A carbon balance calculation showed that the overall catabolism could be divided into two independent parts: upper glycolysis linked to glucose catabolism and lower glycolysis liked to ethanol catabolism. This calculation showed that the carbon flux through the tricarboxylic cycle is lower on ethanol than on acetate. This corroborated the diminution of carbon flux through the Pta-Ack pathway due to the inhibition of Pta activity on ethanol.  相似文献   

14.
Biotinyl proteins in cytoplasm and mitochondria of rat liver were examined by fluorography and the quantity of acetyl CoA carboxylase was determined after sodium dodecyl sulfate-denatured proteins were incubated with [14C] methyl avidin and separated by polyacrylamide gel electrophoresis. Results show that one-half of the total acetyl CoA carboxylase in liver of fed rats was associated with mitochondria in a relatively inactive form. Fasting shifted the distribution of the enzyme toward the mitochondrial fraction and refeeding previously fasted rats shifted the distribution towards cytoplasm. Thus, acetyl CoA carboxylase can be added to the list of ambiquitous enzymes whose subcellular distribution varies with physiological conditions.  相似文献   

15.
The yeast Candida utilis was continuously synchronized by the phasing technique (6 h doubling time) with either iron or nitrogen as the limiting nutrient. Iron limitations resulted in decreased molar growth yields with respect to the carbon substrates and ammonia and in increased specific rates of oxygen uptake. Relatively low energy-charge values were maintained by the iron-limited culture. All these taken together seemed to indicate that the growth of the yeast under iron limitation was also limited by metabolically available energy. Consideralbe amounts of ethyl acetate were produced by the yeast under phased cultivation when the growth was limited by iron but not by nitrogen. In vitro studies using cell-free extracts showed that the substrates for ethyl acetate synthesis were acetyl coenzyme A (acetyl CoA) and ethanol. Under iron-limited growth acetyl CoA seemed to be diverted to ethyl acetate formation rather than being oxidized through the tricarboxylic acid (TCA) cycle. The possibility of energy limitation under iron-limited growth being brought about by the reduced capacity of the yeast to oxidize acetyl CoA through the TCA cycle is considered.  相似文献   

16.
We have previously shown significant dilution of the specific activity of the intracellular acetyl CoA pool when radiolabeled acetate is used as the precursor in liver slice experiments. In the present study, using liver from animals subjected to various manipulations known to alter the rate of cholesterogenesis, the specific activity of the intramitochondrial acetyl CoA pool was 27-49% of the theoretical specific activity expected if no endogenous dilution occurred. Because the cytosolic acetyl CoA pool that gives rise to cholesterol is not in equilibrium with the intramitochondrial pool, these values cannot be used to correct the flux of labeled carbon from [(14)C]acetate into cholesterol. However, because [(14)C]octanoate is rapidly oxidized intramitochondrially to acetyl CoA, which feeds both the intra- and extramitochondrial metabolic pathways, [(14)C]octanoate can be utilized to determine true flux rates of C(2) units into cholesterol and other products. Using this substrate in liver slices from animals subjected to a variety of experimental manipulations, the specific activity of the intracellular acetyl CoA pool was 54-71% of the expected specific activity. After correction for endogenous dilution, the C(2) flux into cholesterol varied from 335 to 459 nmoles.g(-1).hr(-1) in control animals, was suppressed 10-40-fold in animals subjected to fasting and cholesterol feeding, and increased into the range of 1500 nmoles.g(-1).hr(-1) after derepression with cholestyramine feeding or biliary diversion. Data also are presented that show very good agreement between the corrected C(2) flux rate from octanoate into cholesterol and microsomal HMG CoA reductase activity in the same liver under conditions in which the synthetic rates were varied over a 100-fold range.  相似文献   

17.
The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate.  相似文献   

18.
A Chan  M Ebadi 《Life sciences》1981,28(6):697-703
The relationship between the concentration of CoASH and the activity of serotonin N-acetyltransferase (NAT) was studied in rat pineal glands in culture. A technique for microdetermination of CoASH was developed by utilizing acetyl CoA synthetase and partially purified rat liver NAT. Initially CoASH was acetylated with [1–3H] acetate using acetyl CoA synthetase. Subsequently, the labelled acetyl group was transferred from [1–3H] acetyl CoA to tryptamine forming [1–3H acetyl-tryptamine which was then extracted into chloroform and measured by scintillation spectrometry. A direct relationship appeared to exist between the concentrations of CoASH and [1–3H] acetyltryptamine. This method is sensitive and specific since it can detect as low as 10–15 pmoles of CoASH but not structurally related substances such as acetyl CoA, ADP, cysteamine, or D-pantothenic acid. After treating the rat pineal glands in culture with 10 μM norepinephrine for six hours, the concentration of CoASH was found to decrease significantly from 31.96 ± 0.68 to 24.44 ± 0.37 pmoles/gland, while the activity of NAT increased 68 fold. This inverse relationship indicates that CoASH does not play a direct role in NAT induction although it does protect darktime NAT activity in pineal homogenates against thermal inactivation. The sensitivity and the adaptability of this method can be utilized to measure CoASH in discrete regions of rat brain and in experimental conditions where the micromeasurement of CoASH may be required.  相似文献   

19.
A multiple enzyme and multisubstrate cycling system is described for the radiometric determination of cholineacetyltransferase (ChAT) activity in crude tissue homogenates. The methods employs [14C]acetate coupled with the enzymes acetate kinase (AK) and phosphotransacetylase (PTA) for the generation of [14C]acetyl CoA. By recycling it was possible to avoid product inhibition of ChAT by CoA, ATP was maintained constant by rephosphorylation of ADP. Kinetics of the individual enzyme reactions were studied and the parameters obtained were used to select appropriate conditions to maintain linearity of varying amounts ChAT activity over a sixty minute time course. The sensitivity of the method is limited only by the specific activity of commercially available isotope labeled acetate.Special issue dedicated to Dr. O. H. Lowry.  相似文献   

20.
We have previously reported that chronic valproate administration reduced ketonemia in suckling mice and fasting epileptic children. The present study demonstrates that even a single dose of valproate in the therapeutic range for man caused a prolonged reduction of plasma beta-hydroxybutyrate levels in normal infant mice; the plasma glucose concentration was also significantly lowered. In the livers of these animals, there were extraordinary decreases in levels of free coenzyme A, acetyl CoA and free carnitine. Concomitantly concentrations of acid-soluble fatty acid (short-chain, non-acetyl) coenzyme A esters and of acid-insoluble (long-chain) fatty acid carnitine esters increased. There was evidence for inhibition of the metabolic flux through the Krebs citric acid cycle at those enzyme reactions which require coenzyme A. While valproate doubled liver alanine levels, concentrations of liver aspartate, glutamate and glutamine were reduced. All of the valproate-induced metabolite changes can be explained by the decrease of coenzyme A due to the accumulation of acid-soluble (non-acetyl) coenzyme A esters (presumably valproyl CoA and further metabolites). Decreased coenzyme A would limit the activities of one or more enzymes in the pathway of fatty acid oxidation and the Krebs citric acid cycle. Secondary decreases in acetyl CoA would limit both ketogenesis and gluconeogenesis. Decreased levels of selected hepatic amino acids could reflect their use as alternative fuels. The effect of clinical doses of valproate in infant mice may relate to the valproate-associated syndrome of hepatic failure and Reye-like encephalopathy in some infants and children and suggest a simple screen for those who may be at particular risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号