首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
Macrophage colony-stimulating factor (M-CSF) is a physiological regulator of monocyte-macrophage lineage. Ectopic expression of the M-CSF receptor (M-CSFR, or Fms) in murine myeloid cell line FDC-P1 (FD/Fms cells) results in M-CSF-dependent macrophage differentiation. Previously, we observed that M-CSF induces two temporally distinct phases of mitogen-activated protein kinase (MAPK) phosphorylation. Here we show that levels of phosphorylated MAPK kinase MEK1 follow the same kinetics as MAPK phosphorylation, characterized by an early and transient phase (the first 30 min of M-CSF stimulation) and a late and persistent phase from 4 h of stimulation. The MEK inhibitor U0126 strongly inhibited both phases of MAPK phosphorylation as well as FD/Fms cell differentiation, indicating that MAPK may relay M-CSF differentiation signaling downstream of M-CSFR. Treatment of FD/Fms cells with U0126 during the first hour of M-CSF stimulation reversibly blocked the early phase of MAPK phosphorylation but did not affect differentiation. In contrast, U0126 still inhibited FD/Fms cell differentiation when its addition was delayed by 24 h. This demonstrated that late and persistent MEK activity is specifically required for macrophage differentiation to occur. Furthermore, disrupting Grb2-Sos complexes with a specific blocking peptide did not prevent FD/Fms cells differentiation in response to M-CSF, nor did it abolish MAPK phosphorylation. The role of phosphatidylinositol 3-kinase (PI 3-kinase), another potential regulator of the MAPK pathway, was examined using the specific inhibitor LY294002. This compound could not impede FD/Fms cell commitment to macrophage differentiation and did not significantly affect MAPK phosphorylation in response to M-CSF. Therefore, M-CSF differentiation signaling in myeloid progenitor cells is mediated through persistent MEK activity but it is not strictly dependent upon Grb2-Sos interaction or PI 3-kinase activity.  相似文献   

3.
4.
The c-fms protein is a receptor for macrophage colony-stimulating factor (M-CSF) with intrinsic protein-tyrosine kinase activity. We investigated the tyrosine phosphorylation of murine c-fms proteins expressed from a retroviral vector in factor-dependent myeloid FDC-P1 cells and in BALB/c 3T3 fibroblasts transformed by the expression of the c-fms gene. FDC-P1 cells expressing c-fms were able to grow and differentiate in response to M-CSF. Their c-fms proteins were normally phosphorylated on serine and became phosphorylated on tyrosine residues contained in five tryptic peptides when the cells were exposed to M-CSF. A subset of these peptides was constitutively phosphorylated in BALB/c cells expressing c-fms, consistent with the production of M-CSF by these cells. All the peptides detected in vivo were also phosphorylated in vitro. These peptides were analyzed by susceptibility to proteases, comparison with synthetic peptides, and site-directed mutagenesis. The identities of four of the tryptic peptides were determined; they arise from three unique tyrosine phosphorylation sites. One major site of tyrosine phosphorylation at residue 697 accounted for two of the tryptic peptides. A second major site was identified at tyrosine residue 706. These two tyrosine phosphorylation sites are located within the tyrosine kinase insert region. Tyrosine 807, which has homology to the major autophosphorylation site of the p60v-src tyrosine kinase, is a minor autophosphorylation site. Possible functional roles for these phosphorylations of the c-fms protein include interactions with substrate proteins, catalytic activity, and ligand-induced degradation.  相似文献   

5.
The normal proto-oncogene c-fms encodes the macrophage growth factor (M-CSF) receptor involved in growth, survival, and differentiation along the monocyte-macrophage lineage of hematopoietic cell development. A major portion of our research concerns unraveling the temporal, molecular, and structural features that determine and regulate these events. Previous results indicated that c-fms can transmit a growth signal as well as a signal for differentiation in the appropriate cells. To investigate the role of the Fms tyrosine autophosphorylation sites in proliferation vs. differentiation signaling, four of these sites were disrupted and the mutant receptors expressed in a clone derived from the myeloid FDC-P1 cell line. These analyses revealed that: (1) none of the four autophosphorylation sites studied (Y697, Y706, Y721, and Y807) are essential for M-CSF-dependent proliferation of the FDC-P1 clone; (2) Y697, Y706, and Y721 sites, located in the kinase insert region of Fms, are not necessary for differentiation but their presence augments this process; and (3) the Y807 site is essential for the Fms differentiation signal: its mutation totally abrogates the differentiation of the FDC-P1 clone and conversely increases the rate of M-CSF-dependent proliferation. This suggests that the Y807 site may control a switch between growth and differentiation. The assignment of Y807 as a critical site for the reciprocal regulation of growth and differentiation may provide a paradigm for Fms involvement in leukemogenesis, and we are currently investigating the downstream signals transmitted by the tyrosine-phosphorylated 807 site. In Fms-expressing FDC-P1 cells, M-CSF stimulation results in the rapid (30 sec) tyrosine phosphorylation of Fms on the five cytoplasmic tyrosine autophosphorylation sites, and subsequent tyrosine phosphorylation of several host cell proteins occurs within 1–2 min. Complexes are formed between Fms and other signal transduction proteins such as Grb2, Shc, Sos1, and p85. In addition, a new signal transduction protein of 150 kDa is detectable in the FDC-P1 cells. The p150 is phosphorylated on tyrosine, and forms a complex with Shc and Grb2. The interaction with Shc occurs via a protein tyrosine binding (PTB) domain at the N-terminus of Shc. The p150 is not detectable in Fms signaling within fibroblasts, yet the PDGF receptor induces the tyrosine phosphorylation of a similarly sized protein. In hematopoietic cells, this protein is involved in signaling by receptors for GM-CSF, IL-3, KL, MPO, and EPO. We have now cloned a cDNA for this protein and found at least one related family member. The related family member is a Fanconia Anemia gene product, and this suggests potential ways the p150 protein may function in Fms signaling. Mol Reprod Dev 46:96–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Fms is the receptor for macrophage colony-stimulating factor (M-CSF) and contains intrinsic tyrosine kinase activity. Expression of exogenous Fms in a murine myeloid progenitor cell line, FDC-P1 (FD-Fms), results in M-CSF-dependent growth and macrophage differentiation. Previously, we described a 100-kDa protein that was tyrosine phosphorylated upon M-CSF stimulation of FD-Fms cells. In this report, we identify this 100-kDa protein as the recently cloned scaffolding protein Gab2, and we demonstrate that Gab2 associates with several molecules involved in M-CSF signaling, including Grb2, SHP2, the p85 subunit of phosphatidylinositol 3'-kinase, SHIP, and SHC. Tyrosine phosphorylation of Gab2 in response to M-CSF requires the kinase activity of Fms, but not that of Src. Overexpression of Gab2 in FD-Fms cells enhanced both mitogen-activated protein kinase (MAPK) activity and macrophage differentiation, but reduced proliferation, in response to M-CSF. In contrast, a mutant of Gab2 that is unable to bind SHP2 did not potentiate MAPK activity. Furthermore, overexpression of this mutant in FD-Fms cells inhibited macrophage differentiation and resulted in a concomitant increase in growth potential in response to M-CSF. These data indicate that Gab2 is involved in the activation of the MAPK pathway and that the interaction between Gab2 and SHP2 is essential for the differentiation signal triggered by M-CSF.  相似文献   

7.
There are clones of myeloid leukemic cells that can be induced to undergo terminal cell differentiation to macrophages by normal hemopoietic regulatory proteins. Induction of differentiation in two different clones of myeloid leukemic cells with interleukin 6 (IL-6) or granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in induction of mRNA for the hemopoietic regulatory proteins IL-6, GM-CSF, interleukin 1 alpha and interleukin 1 beta, tumor necrosis factor, and transforming growth factor beta 1. In one of these clones, induction of differentiation with GM-CSF was also associated with induction of mRNA for macrophage colony-stimulating factor (M-CSF) but not for the receptor for M-CSF (c-fms), whereas in the other clone, induction of differentiation with IL-6 was associated with induction of mRNA for both c-fms and M-CSF. The clones also differed in their responsiveness to these regulators. There was no induction of mRNA for granulocyte colony-stimulating factor or interleukin 3 during differentiation of either clone. The results indicate that the genes for a nearly normal network of positive and negative hemopoietic regulatory proteins are induced during differentiation of these myeloid leukemic cells and that there are leukemic clones with specific defects in this network.  相似文献   

8.
9.
The production, survival, and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor. M-CSF receptor activates multiple cytoplasmic pathways in which adaptor and scaffolding proteins play a central role. In this study, we showed that SKAP55-related (SKAP55R) adaptor protein is expressed in myeloid cells and macrophages and is rapidly and transiently tyrosine-phosphorylated in response to M-CSF. M-CSF induced SKAP55R association with other tyrosine-phosphorylated proteins and with actin. When overexpressed in myeloid cells, SKAP55R decreased M-CSF-dependent proliferation without affecting differentiation. Altogether, these results demonstrate that SKAP55R adaptor is implicated in the M-CSF signaling pathway and suggest its role as a negative regulator of growth. Moreover, specific association between SKAP55R and actin support the idea that SKAP55R is implicated in the regulation of actin dynamics under the control of M-CSF.  相似文献   

10.
11.
Fms, the macrophage colony-stimulating factor (M-CSF) receptor, is normally expressed in myeloid cells and initiates signals for both growth and development along the monocyte/macrophage lineage. We have examined Fms signal transduction pathways in the murine myeloid progenitor cell line FDC-P1. M-CSF stimulation of FDC-P1 cells expressing exogenous Fms resulted in tyrosine phosphorylation of a variety of cellular proteins in addition to Fms. M-CSF stimulation also resulted in Fms association with two of these tyrosine-phosphorylated proteins, one of which was identified as the 55-kDa Shc, which is shown in other systems to be involved in growth stimulation, and the other was a previously uncharacterized 150-kDa protein (p150). Fms also formed complexes with Grb2 and Sos1, and neither contained phosphotyrosine. Whereas both Grb2 and Sos1 complexed with Fms only after M-CSF stimulation, the amount of Sos1 complexed with Grb2 was not M-CSF dependent. Shc coimmunoprecipitated Sos1, Grb2, and tyrosine-phosphorylated p150, while Grb2 immunoprecipitates contained mainly phosphorylated p150, Fms, Shc, and Sos1. Shc interacted with tyrosine-phosphorylated p150 via its SH2 domain, and the Grb2 SH2 domain likewise bound tyrosine-phosphorylated Fms and p150. Analysis of Fms mutated at each of four tyrosine autophosphorylation sites indicated that none of these sites dramatically affected p150 phosphorylation or its association with Shc and Grb2. M-CSF stimulation of fibroblast cell lines expressing exogenous murine Fms did not phosphorylate p150, and this protein was not detected either in cell lysates or in Grb2 or Shc immunoprecipitates. The p150 protein is not related to known signal transduction molecules and may be myeloid cell specific. These results suggest that M-CSF stimulation of myeloid cells could activate Ras through the nucleotide exchange factor Sos1 by Grb2 binding to either Fms, Shc, or p150 and that Fms signal transduction in myeloid cells differs from that in fibroblasts.  相似文献   

12.
Macrophage colony stimulating factor (M-CSF or CSF-1) acts to regulate the development and function of cells of the macrophage lineage. Murine myeloid FDC-P1 cells transfected with the CSF-1 receptor (FD/WT) adopt a macrophage-like morphology when cultured in CSF-1. This process is abrogated in FDC-P1 cells transfected with the CSF-1 receptor with a tyrosine to phenyalanine substitution at position 807 (FD/807), suggesting that a molecular interaction critical to differentiation signaling is lost (Bourette, R. P., Myles, G. M., Carlberg, K., Chen, A. R., and Rohrschneider, L. R. (1995) Cell Growth Differ. 6, 631--645). A detailed examination of lysates of CSF-1-treated FD/807 cells by two-dimensional SDS-polyacrylamide gel electrophoresis (PAGE) revealed a number of proteins whose degree of tyrosine phosphorylation was modulated by the Y807F mutation. Included in this category were three phosphorylated proteins that co-migrated with p46/52(Shc). Immunoprecipitation, Western blotting, and in vitro binding studies suggest that they are indeed p46/52(Shc). A key regulator of differentiation in a number of cell systems, ERK was observed to exhibit an activity that correlated with the relative degree of differentiation induced by CSF-1 in the two cell types. Transfection of cells with a non-tyrosine-phosphorylatable form of p46/52(Shc) prevented the normally observed CSF-1-mediated macrophage differentiation as determined by adoption of macrophage-like morphology and expression of the monocyte/macrophage lineage cell surface marker, Mac-1. These results are the first to suggest that p46/52(Shc) may play a role in CSF-1-induced macrophage differentiation. Additionally, a number of proteins were identified by two-dimensional SDS-PAGE whose degree of tyrosine phosphorylation is also modulated by the Y807F substitution. This group of molecules may contain novel signaling molecules important in macrophage differentiation.  相似文献   

13.
Macrophage CSF (M-CSF) induces responsive bone marrow precursors into rapid growth and differentiation to mature macrophages. Available cell lines that depend on M-CSF for growth are well differentiated and rather adherent. We investigated the effects of M-CSF on immature myeloid cell lines as models of the marrow precursors. The murine line NFS-60 requires IL-3 for growth and also responds to granulocyte-CSF and granulocyte-macrophage-CSF. Cultures of one NFS-60 subline, when switched from IL-3 to 10% L cell conditioned media, a source of M-CSF, or purified M-CSF, frequently acquired large, adherent cells. The adherent cells grew slowly in the presence of M-CSF, in contrast to the majority population of small, round, rapidly growing cells. The large cells had properties of differentiated macrophages that were absent in the nonadherent cells. Cells with macrophage phenotype were not observed in IL-3-supported cultures over many passages. A subline was derived from NFS-60 that grew rapidly and continuously in human or murine M-CSF as round, nonadherent cells. The line, called M-NFS-60, responded well to M-CSF and IL-3, weakly to granulocyte-CSF and not at all to murine granulocyte-macrophage-CSF, IL-4, or human IL-1. A mAb to human M-CSF specifically inhibited only M-NFS-60 proliferation induced by the human growth factor, whether produced by mammalian or bacterial cells. This study shows two effects of M-CSF on the IL-3-dependent NFS-60 line. Upon first exposure to M-CSF, cells may undergo global differentiation to slowly replicating macrophages in conditions we have not been able to define. The more common effect is rapid growth of immature myeloid cells like the bone marrow precursors, but with a block to differentiation. Thus, these cells may be useful as models of M-CSF-induced differentiation, and of permanently maintained macrophage precursors.  相似文献   

14.
The normal cellular counterpart of the v-fms oncogene product is a receptor for the mononuclear phagocyte colony-stimulating factor, CSF-1. An interleukin-3 (IL-3)-dependent mouse myeloid cell line, FDC-P1, was infected with a murine retrovirus vector containing v-fms linked to a gene encoding resistance to neomycin (neo). Infected cells selected for resistance to the aminoglycoside G418 contained few proviral DNA copies per haploid genome, expressed low levels of the v-fms-coded glycoprotein, remained IL-3 dependent for growth, and were nontumorigenic in nude mice. In contrast, infected cells selected for their ability to grow in the absence of IL-3 contained an increased number of proviral insertions, expressed high levels of the v-fms-coded glycoprotein, and were tumorigenic in nude mice. The IL-3-independent cells expressed IL-3 receptors of comparable number and affinity to those detected in uninfected FDC-P1 cells and did not produce a growth factor able to support replication of the parental cells. Thus, the synthesis of high levels of the v-fms gene product in FDC-P1 cells abrogated their requirement for IL-3 and rendered the cells tumorigenic by a nonautocrine mechanism. The data suggest that v-fms encodes a promiscuous tyrosine kinase able to transform cells of the myeloid lineage that do not normally express CSF-1 receptors.  相似文献   

15.
The production, survival and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor Fms. Binding of M-CSF results in Fms autophosphorylation on specific tyrosines that act as docking sites for intracellular signaling molecules containing SH2 domains. Using a yeast two-hybrid screen, we cloned a novel adaptor protein which we called 'Mona' for monocytic adaptor. Mona contains one SH2 domain and two SH3 domains related to the Grb2 adaptor. Accordingly, Mona interacts with activated Fms on phosphorylated Tyr697, which is also the Grb2-binding site. Furthermore, Mona contains a unique proline-rich region located between the SH2 domain and the C-terminal SH3 domain, and is apparently devoid of any catalytic domain. Mona expression is restricted to two hematopoietic tissues: the spleen and the peripheral blood mononuclear cells, and is induced rapidly during monocytic differentiation of the myeloid NFS-60 cell line in response to M-CSF. Strikingly, overexpression of Mona in bone marrow cells results in strong reduction of M-CSF-dependent macrophage production in vitro. Taken together, our results suggest an important role for Mona in the regulation of monocyte/macrophage development as controlled by M-CSF.  相似文献   

16.
Binding of macrophage colony stimulating factor (M-CSF) to its receptor (Fms) induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins that relay growth and development signals. To determine whether a distinct signaling pathway is responsible for the Fms differentiation signal versus the growth signal, we sought new molecules involved in Fms signaling by performing a two-hybrid screen in yeast using the autophosphorylated cytoplasmic domain of the wild-type Fms receptor as bait. Clones containing SH2 domains of phospholipase C-gamma2 (PLC-gamma2) were frequently isolated and shown to interact with phosphorylated Tyr721 of the Fms receptor, which is also the binding site of the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase). At variance with previous reports, M-CSF induced rapid and transient tyrosine phosphorylation of PLC-gamma2 in myeloid FDC-P1 cells and this activation required the activity of the PI3-kinase pathway. The Fms Y721F mutation strongly decreased this activation. Moreover, the Fms Y807F mutation decreased both binding and phosphorylation of PLC-gamma2 but not that of p85. Since the Fms Y807F mutation abrogates the differentiation signal when expressed in FDC-P1 cells and since this phenotype could be reproduced by a specific inhibitor of PLC-gamma, we propose that a balance between the activities of PLC-gamma2 and PI3-kinase in response to M-CSF is required for cell differentiation.  相似文献   

17.
Epidermal growth factor (EGF) is commonly thought to affect the proliferation of many cells, especially epithelial cells. Aberrant expression of the receptor for EGF, (EGFR) or members of the EGFR family is often implicated in the etiology of many cancers. Ligation of the EGFR results in the activation of many downstream signaling pathways which have profound effects on cell cycle progression and the prevention of apoptosis. In general, the EGFR is thought to be either not expressed or expressed at low levels in hematopoietic cells. We determined that the EGFR was expressed at a low level in the murine cytokine-dependent hematopoietic cell line FDC-P1 but not in an additional murine IL-3 dependent cell line FL5.12. EGF induced a mild effect on DNA synthesis and ERK activation in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Addition of suboptimal concentrations of IL-3 synergized with EGF in stimulating DNA synthesis in EGFR-positive FDC-P1 cells. Likewise, the EGFR inhibitor AG1478 induced apoptosis in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Both cell lines can be directly transformed to cytokine independence by activated EGFR (v-ERBB) expression in the absence of autocrine growth factors indicating that they are poised to fully utilize EGFR mediated signal transduction pathways as a means for proliferation. These results document the functional importance of endogenous EGFR signaling pathway in some hematopoietic cells.  相似文献   

18.
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor, which plays a key role in the proliferation and differentiation of cells of the myelomonocytic lineage. In order to study the effects of overexpression of the macrophage colony-stimulating factor receptor in hematopoietic cells, a Harvey sarcoma virus-derived retroviral vector containing the murine c-fms cDNA was pseudotyped with Friend murine leukemia virus and inoculated into newborn DBA/2 mice. This viral complex induced monoclonal or oligoclonal leukemias with a shorter latency than that for Friend murine leukemia virus alone. Unexpectedly, 60% of the integrated fms proviruses had deletions at the 5' end of the c-fms gene. Sequence analysis of seven mutant proviruses indicated that the deletions always included the c-fms ligand binding domain and either occurred within the c-fms sequences, leaving the fms open reading frame unchanged, or joined VL30 sequences located at the 5' end of the parental retroviral vector to internal c-fms sequences, resulting in truncated fms proteins devoid of the canonical signal peptide. In contrast to all tyrosine kinase receptors transduced in retroviruses, no helper gag- or env-derived sequences were fused to the rearranged fms sequences. Viral supernatants isolated from hematopoietic tumors with viruses with deletions were able to transform NIH 3T3 cells as efficiently as parental fms virus, indicating that deletions resulted in constitutive activation of the c-fms gene. These oncogenic variants differ from those transduced in the Suzan McDonough strain of feline sarcoma viruses (L. Donner, L. A. Fedele, C. F. Garon, S. J. Anderson, and C. J. Sherr, J. Virol. 41:489-500, 1982). The high rate of c-fms rearrangement and its relevance in the occurrence of hematopoietic tumors are discussed.  相似文献   

19.
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.  相似文献   

20.
J Lotem  L Sachs 《The EMBO journal》1986,5(9):2163-2170
There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号