首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghosts prepared in CO2-saturated water from unwashed human red cells can be fragmented mechanically, but ghosts from thrice washed cells cannot. If the ghosts are prepared by freezing and thawing, this difference is not observed. The electrophoretic velocity varies also with the way in which the ghosts are prepared. The pH-mobility dependence of washed red cells flatten off to a plateau at pH 9, and the electrophoretic velocity is zero at about pH 2. Ghosts prepared by freezing and thawing have almost the same pH-mobility dependence, but if the ghosts are prepared in CO2-saturated hyptonic saline, the mobility at pH 9.4 is 0.75 times that of washed cells. Fragments of ghosts of unwashed red cells have a smaller mobility than that of the red cells. Trypsin reduces the mobility of washed red cells and of ghosts. Sols of lipid complexes (lecithin, cephalin, and lipositol), at varying pH's, have a mobility 1.2 times that of the washed red cell. The pH-mobility relation is otherwise similar. These complexes can be coated with dextran and trypsin.  相似文献   

2.
The Na,K-ATPase is of major importance for active ion transport across the sarcolemma and thus for electrical as well as contractile function of the myocardium. Furthermore, it is receptor for digitalis glycosides. In human studies of the regulatory aspects of myocardial Na,K-ATPase concentration a major problem has been to obtain tissue samples. Methodological accomplishments in quantification of myocardial Na,K-ATPase using vanadate facilitated 3H-ouabain binding to intact samples have, however, made it possible to obtain reliable measurements on human myocardial necropsies obtained at autopsy as well as on biopsies of a wet weight of only 1–2 mg obtained during heart catheterisation. However, access to the ultimately, normal, vital myocardial tissue has come from the heart transplantation programs, through which myocardial samples from cardiovascular healthy organ donors have become available. In the present paper we evaluate the various values reported for normal human myocardial Na,K-ATPase concentration, its regulation in heart disease and the association with digitalization. Normal myocardial Na,K-ATPase concentration level is found to be 700 pmol/g wet weight. No major variations were found between or within the walls of the heart ventricles. During the first few years of life a marked decrease in myocardial Na,K-ATPase concentration is followed by a stable level obtained in early adulthood and normally maintained throughout life. In patients with enlarged cardiac x-ray silhouette a significant positive, linear correlation between left ventricular ejection fraction (EF) and Na,K-ATPase concentration was established. A maximum reduction in Na,K-ATPase concentration of 89% was obtained when EF was reduced to 20%. Generally, heart failure associated with heart dilatation, myocardial hypertrophy as well as ischaemic heart disease is associated with reductions in myocardial Na,K-ATPase concentration of around 25%. During digoxin treatment of heart failure patients a further reduction in functional myocardial Na,K-ATPase concentration of 15% has been found. Thus, the total reduction in functional myocardial Na,K-ATPase concentration in digitalised heart failure patients may well be of the magnitude 40%. In conclusion, it has become possible to quantify human myocardial Na,K-ATPase in health and disease. Revealed reductions are in heart failure of importance for contractile function, generation of arrhythmia and for digoxin treatment.  相似文献   

3.
Recently discovered macrocyclic carbon suboxide (MCS) factors with the general formula (C(3)O(2))(n) were found to strongly inhibit rabbit and rat Na,K-ATPase as well as SR Ca-ATPase. Highly active MCS factors were obtained by a base/acid treatment of their lipophilic precursor isolated from plants. In the ESI-MS spectra, the dominant molar mass ion of 431 Da corresponds to a 1:1 complex of the carbon suboxide hexamer (n=6; M(r)=408 Da) with a Na(+) ion. Additional mass ions identified in positive and negative ion mode were assigned as complexes of the MCS hexamer (n=6) and octamer (n=8) with Na(+) or with TFA(-) in various ratios. The dominant mass ion values of these active MCS factors from plants are also found in mass spectra of previously described endogenous digitalis-like factors (EDLF) from animals. This would suggest that ubiquitously distributed MCS factors may function as putative endogenous regulatory substances of Na,K-ATPase and possibly of other ATPases. With the symmetric display of several equivalent carbonyl or hydroxy groups, the structure of MCS factors is particularly suited for interactions with proteins and other bio-molecules. This could explain the high biological activity and the unusual properties of the MCS factors.  相似文献   

4.
FXYD2 is a regulatory peptide associated with the α-subunit of the kidney Na,K-ATPase. FXYD2 can be phosphorylated by PKA, and its phosphorylation activates Na,K-ATPase. Here we show that FXYD2 is phosphorylated by PKC (PKC-FXYD2-P), by PKA (PKA-FXYD2-P) or by PKA and PKC simultaneously (FXYD2-P2) modulating both the erythrocyte Na,K-ATPase and the plasma membrane Ca2+-ATPase (PMCA). In erythrocyte ghosts, the addition of PKA-FXYD2-P activated Na,K-ATPase by 80%, while non-phosphorylated FXYD2 (np) activated only 55%. The addition of np FXYD2 did not affect PMCA basal activity, but FXYD2-P2 increased the basal PMCA activity by up to 200%. Calmodulin-activated PMCA activity was increased by np FXYD2 (3-fold) or FXYD2-P2 (2.5-fold). However, PKC-FXYD2-P increased PMCA activity only by 50%. In contrast, when PMCA was treated with PKA-FXYD2-P, the ATPase activity was inhibited by 50%. The effect of all forms of FXYD2-P on calcium uptake from PMCA resembled the pattern observed in ATP hydrolysis. Our results suggest that the FXYD2 anchoring site could be conserved among the P-ATPase family permitting cross regulation. The effects of FXYD2 on calcium uptake and calcium-stimulated ATP hydrolysis suggest a novel role for FXYD2 on PMCA.  相似文献   

5.
The effect of luliberine, one of the hypothalamic releasing-factors, upon the ATPase activity in the rat heart sarcolemma was investigated. A decrease in the (Na+-K+)-ATPase activity and stimulation of Ca-ATPase activity under the influence of luliberine were demonstrated. Inhibition of (Na+-K+)-ATPase by cAMP and noradrenaline was also revealed. A possibility of the direct and cAMP-mediated action of luliberine on the Na+-K+)-ATPase activity is suggested.  相似文献   

6.
There are four isoforms of the α subunit (α1–4) and three isoforms of the β subunit (β1–3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. α2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An α2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of α2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing α1β1, α2β1, and α3β1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, β-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for α2/α3 over α1 (KD α1 > α2 = α3). By contrast, ouabain shows moderate selectivity (≈2.5-fold) for α1 over α2 (KD α1 ≤ α3 < α2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (KD α1 = α3 = α2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K+ ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately α2-selective. This supports a major role of α2 in cardiac contraction and cardiotonic effects of digitalis glycosides.  相似文献   

7.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

8.
Studies of lipid interactions with membranous Na,K-ATPase by using electron spin resonance spectroscopy in conjunction with spin-labelled lipids are reviewed. The lipid stoichiometry, selectivity and exchange dynamics at the lipid-protein interface can be determined, in addition to information on the configuration and rotational dynamics of the protein-associated lipid chains. These parameters, particularly the stoichiometry and selectivity, are related directly to the intramembranous structure of the Na,K-ATPase, and can be used to check the integrity of extensively trypsinised preparations.  相似文献   

9.
The photodynamic, i.e., the light-induced, inactivation of the Na,K-ATPase in the presence of the sensitizer rose bengal was studied under different conditions. The shape of inactivation curves of the enzyme activity was analyzed as well as partial reactions of the pump cycle. Both experimental approaches showed the existence of two different time constants of inactivation of the ion pump, which reflect two pathways of a photodynamic modification. This is supported by the following observations: (1) The amplitude of the initial fast decay of enzyme activity was enhanced in the presence of D2O and reduced in the presence of the singlet oxygen scavenger imidazole. (Similar results were found for the SR Ca-ATPase.) (2) Contrary to the fast enzyme inactivation the slow process shows an inverse dose-rate behavior. (3) Inactivation of the partial reactions of Na+-binding and of K+-binding to the membrane domain of the Na,K-ATPase showed only a single time constant, which corresponded to the slower time constant of enzyme inactivation. In the presence of high concentrations of singlet oxygen the fast time constant dominated the inactivation of the ATP-induced partial reaction for which the cytoplasmic domains of the enzyme play an important role. The data support the conclusion that fast inactivation is due to modification of the cytoplasmic domains and slow inactivation due to modifications of the membrane domain of the ion pumps.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

10.
Recent studies indicate novel roles for the ubiquitous ion pump, Na,K-ATPase, in addition to its function as a key regulator of intracellular sodium and potassium concentration. We have previously demonstrated that ouabain, the endogenous ligand of Na,K-ATPase, can trigger intracellular Ca2+ oscillations, a versatile intracellular signal controlling a diverse range of cellular processes. Here we report that Na,K-ATPase and inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) form a cell signaling microdomain that, in the presence of ouabain, generates slow Ca2+ oscillations in renal cells. Using fluorescent resonance energy transfer (FRET) measurements, we detected a close spatial proximity between Na,K-ATPase and InsP3R. Ouabain significantly enhanced FRET between Na,K-ATPase and InsP3R. The FRET effect and ouabain-induced Ca2+ oscillations were not observed following disruption of the actin cytoskeleton. Partial truncation of the NH2 terminus of Na,K-ATPase catalytic alpha1-subunit abolished Ca2+ oscillations and downstream activation of NF-kappaB. Ouabain-induced Ca2+ oscillations occurred in cells expressing an InsP3 sponge and were hence independent of InsP3 generation. Thus, we present a novel principle for a cell signaling microdomain where an ion pump serves as a receptor.  相似文献   

11.
The effects of phospholipid acyl chain length (nc) and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal hydrophobic thickness of the lipid bilayer decreases from nc = 22 to 18 in the presence of 40 mol% cholesterol. Hydrophobic matching as well as specific interactions of cholesterol with the phosphorylation/dephosphorylation reactions is found to be important. A novel regulatory protein has been identified in Na,K-ATPase membrane preparations from the shark (phospholemmanlike protein from shark, PLMS) with significant homology to phospholemman (PLM), the major protein kinase substrate in myocardium. Both are members of the FXYD gene family. Another member of this family is the Na,K-ATPase subunit indicating that these proteins may be specific regulators of the Na,K-ATPase. A regulatory mechanism is described in which association/dissociation of PLMS with the Na,K-ATPase is governed by its phosphorylation by protein kinases.  相似文献   

12.
The interaction of extracellular Na (Nao), K (Ko), and strophanthidin with the Na-K pump of the human red blood cell has been investigated. Inhibition by submaximal concentrations of strophanthidin rapidly reaches a level which does not increase further over a relatively long period of time. Under these circumstances, it is possible to apply a steady-state kinetic analysis to the interaction of Nao, Ko, and strophanthidin with the pump. In Na-free solutions, strophanthidin increases the apparent K1/2 of the pump for Ko, but does not change the form of the relation between the reciprocal of the active K influx (iMKP–1) and the reciprocal of [Ko] ([Ko]–1); the relation both in the presence and absence of strophanthidin is adequately described by a straight line. In solutions containing Na, strophanthidin changes the form of the curve describing the relation between iMKP–1 vs. [Ko]–1; the curve becomes more parabolic in solutions containing strophanthidin. The rate of ouabain binding to K-free cells has also been measured; in the absence of K, the rate of binding is unaffected by Nao. The data are considered in terms of a simple kinetic model. The findings can be explained if it is supposed that at low external K the form of the pump combined with one Nao is more likely to combine with strophanthidin than is the uncombined form of the pump. The uncombined form of the pump is more likely to combine with K even at very low Ko than with strophanthidin.  相似文献   

13.
Proteins interacting with 11-type of Na,K-ATPase were revealed in pig kidney outer medulla and duck salt glands using three different methods (immunoprecipitation, protein overlay, and chemical cross-linking). Immunoprecipitation was performed after solubilization of protein homogenate with Triton X-100 so that both membrane and cytosol proteins bound to Na,K-ATPase could be revealed. Two other methods were used to study the interaction of cytosol proteins with purified Na,K-ATPase. The sets of proteins revealed by each method in outer medulla of pig kidney were different. Proteins interacting with Na,K-ATPase that have molecular masses 10, 15, 70, 75, 105, 120, and 190 kD were found using the immunoprecipitation method. The chemical cross-linking method revealed proteins with molecular masses 25, 35, 40, 58, 68-70, and 86-88 kD. The protein overlay method revealed in the same tissue proteins with molecular masses 38, 42, 43, 60, 62, 66, 70, and 94 kD.  相似文献   

14.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

15.
Cornelius F 《Biochemistry》2008,47(6):1652-1658
Polyunsaturated phospholipids such as 16:0-22:6 PC and 22:6 PC both stabilized the E1 conformation and inhibited turnover of Na,K-ATPase reconstituted into 18:1 PC or 18:1 PC/cholesterol liposomes. The inhibition increases in the order 22:6 PC > 16:0-22:6 PC both in the presence and in the absence of cholesterol, but is most pronounced in the absence of cholesterol. The inhibition of Na,K-ATPase turnover may thus correlate with the capability of polyunsaturated phospholipids and cholesterol to induce liquid-disordered and liquid-ordered lipid phases, respectively. In the presence of cholesterol 16:0-22:6 PC and 22:6 PC both increase the apparent Na+ affinity and change the K+ inhibition observed at low ATP concentration into activation. These effects on Na,K-ATPase kinetics can be explained by the ability of polyunsaturated phospholipids to induce lateral phase separation from cholesterol, which may be partially excluded from interaction with the Na,K-ATPase/lipid interface. Finally, inclusion of polyunsaturated phospholipids may induce changes in the bilayer hydrophobic thickness, which will increase the hydrophobic mismatch between lipids and protein.  相似文献   

16.
The accessibility of the tryptophans in dog kidney Na,K-ATPase was studied with the technique of quenching by acrylamide. By use of a modified Stern-Volmer equation, fa, the effective fraction of tryptophans most exposed to quencher, and Ka, the effective quenching constant, were calculated. The direct Stern-Volmer plots are nonlinear under nondenaturing conditions, indicating that the tryptophan residues are unequally accessible to quencher. Modified Stern-Volmer plots revealed marked differences in the exposure of tryptophans in the E1 and E2 states. In the presence of Na or ADP, ligands that stabilize E1, these plots curve downward, indicating that the in addition to buried (unquenched) tryptophans, there is a heterogeneous class of tryptophans. In the presence of K or ouabain, conditions that favor E2, the modified Stern-Volmer plots are linear, consistent with a homogeneous population of tryptophans. Treatment with chymotrypsin to block the E1 to E2 transition results in a new set of quenching parameters which are unchanged with Na or K. Even after detergent denaturation (1% sodium dodecyl sulfate for 30 min), Stern-Volmer plots are nonlinear, and a significant fraction of tryptophan residues remain inaccessible to quencher. Denaturation with urea or guanidine HCl plus dithiothreitol increases the fraction of quenchable fluorescence even more, but still a small fraction, about 7-13%, is buried. The observed changes in exposure of the tryptophan residues would seem to account for the differences in intrinsic fluorescence seen on adding K and Na to Na,K-ATPase. The present results provide new evidence that a significant rearrangement of amino acid residues results from the E1 to E2 transition. Furthermore, a region of the molecule is inaccessible even after denaturation; this may correspond to highly hydrophobic stretches that are normally buried in the membrane.  相似文献   

17.
Na,K-ATPase was localized in canine fungiform and circumvallfltepapillae by immunocytochemical and histochemical methods. Monoclonalantibodies raised against the -subunit of Na,K-ATPase showedspecific staining in the stratum basale and in the lower layersof the stratum spinosum. Small stained wavy lines, interpretedas trigerrunal fibers, were found in the epithelium near tastebuds. In contrast, conventional histochemical methods showedno staining in the epithelium. In both immunocytochemical and histochemical methods taste budswere densely stained. The histochemical stain in taste budswas essentially eliminated by levamisole and L-cysteine butremained in the presence of 10 mM ouabain or in the absenceof potassium. These data suggest that the majority of the histochemicalstain arises from phosphatases other than Na,K-ATPase.  相似文献   

18.
The indanedione series of vinyl ketone spin-labelling reagents has been extended in two ways: by increasing the length of the rigid spacer between the reactive centre and the nitroxide ring, or by introducing an electrophilic substituent (that could also hinder its rotation) at the bridge head position of the nitroxide ring. Three reagents of this new series have been used to spin label the Class II thiol groups of membranous Na,K-ATPase from Squalus acanthias. With a conjugated diene spacer, the majority of spin labels are strongly held but a minor population is relatively mobile at 37 degrees C. With a conjugated triene spacer, the nitroxide is still strongly held but a portion of the label is non-covalently bound. The 4-bromo-pyrroline derivative (with short vinyl spacer) is tightly held at the attachment site, and the conventional electron paramagnetic resonance (EPR) spectra distinguish between the two enantiomeric structures which differ in their mobility at 37 degrees C. Saturation transfer EPR (ST-EPR) spectra of this label at 4 degrees C have been used to determine the dependence of the protein rotational mobility on ionic strength. Electrostatic repulsion contributes to the lateral interactions between Na,K-ATPase molecules.  相似文献   

19.
Placentas of women suffering from pregnancy-induced hypertension (PIH) were found to contain a greater amount of Na,K-ATPase molecules, estimated from anthroyl ouabain binding, than normotensive individuals. Both the microsomal fraction of placental cells and purified Na,K-ATPase showed an increased affinity for the specific inhibitor ouabain which, in the case of the microsomes, bound with a dissociation constant of 0.9 nM as compared with 3.4 nM in the controls. Likewise, the dissociation constant of the ouabain complex with purified Na,K-ATPase was about 3.5 times lower in the hypertensive patients. The differences are apparently caused by a different microenvironment of the ouabain-binding site, as reflected in the quantum yield of bound anthroyl ouabain. If an endogenous digitalis-like factor is present in the body fluids to regulate Na,K-ATPase activity, the present results render its role quite plausible.  相似文献   

20.
The role of N-linked glycosylation of beta-subunits in the functional properties of the oligomeric P-type ATPases Na,K- and H,K-ATPase has been examined by expressing glycosylation-deficient Asn-to-Gln beta-variants in Xenopus oocytes. For both ATPases, the absence of the huge N-linked oligosaccharide moiety on the beta-subunit does not affect alpha/beta coassembly, plasma membrane delivery or functional activity of the holoenzyme. Whereas this is in line with several previous glycosylation studies on Na,K-ATPase, this is the first report showing that the cell surface delivery and enzymatic activity of the gastric H,K-ATPase is unaffected by the lack of N-linked glycosylation. Sulfhydryl-specific labeling of introduced cysteine reporter sites with the environmentally sensitive fluorophore tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes enabled us to further investigate potential effects of the N-glycans on more subtle enzymatic properties, like the distribution between E 1P/E 2P states of the catalytic cycle and the kinetics of the E 1P/E 2P conformational transition under presteady state conditions. For both Na,K-ATPase and H,K-ATPase, we observed differences in neither the voltage-dependent E 1P/E 2P ratio nor the kinetics of the E 1P/E 2P transition between holoenzymes comprising glycosylated and glycosylation-deficient beta-subunits. We conclude that the N-linked glycans on these essential accessory subunits of oligomeric P-type ATPases are dispensable for proper folding, membrane stabilization of the alpha-subunit and transport function itself. Glycosylation is rather important for other cellular functions not relevant in the oocyte expression system, such as intercellular interactions or basolateral versus apical targeting in polarized cells, as demonstrated in other expression systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号