首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β2-Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.  相似文献   

2.
Alzheimer's and several other diseases are characterized by the misfolding and assembly of protein subunits into amyloid fibrils. Current models propose that amyloid fibril formation proceeds via the self-association of several monomers to form a nucleus, which then elongates by the addition of monomer to form mature fibrils. We have examined the concentration-dependent kinetics of apolipoprotein C-II amyloid fibril formation and correlated this with the final size distribution of the fibrils determined by sedimentation velocity experiments. In contrast to predictions of the nucleation-elongation model, the final size distribution of the fibrils was found to be relatively independent of the starting monomer concentration. To explain these results, we extended the nucleation-elongation model to include fibril breaking and rejoining as integral parts of the amyloid fibril assembly mechanism. The system was examined under conditions that affected the stability of the mature fibrils including the effect of dilution on the free pool of monomeric apolipoprotein C-II and the time-dependent recovery of fibril size following sonication. Antibody-labelling transmission electron microscopy studies provided direct evidence for spontaneous fibril breaking and rejoining. These studies establish the importance of breaking and rejoining in amyloid fibril formation and identify prospective new therapeutic targets in the assembly pathway.  相似文献   

3.
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.  相似文献   

4.
Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine‐rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His‐tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low‐pH harsh conditions, however, His‐HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid‐hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full‐length His‐HP when incubated with 10–20% 2,2,2‐trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage.  相似文献   

5.
6.
7.
The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297–391), termed ‘dGAE’. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are structurally closely related to the paired helical filaments (PHFs) isolated from Alzheimer’s disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.  相似文献   

8.
The accumulation of cross‐β‐sheet amyloid fibrils is the hallmark of amyloid diseases. Recently, we reported the discovery of amyloid disaggregase activities in extracts from mammalian cells and Caenorhabditis elegans. However, we have discovered a problem with the interpretation of our previous results as Aβ disaggregation in vitro. Here, we show that Aβ fibrils adsorb to the plastic surface of multiwell plates and Eppendorf tubes. This adsorption is markedly increased in the presence of complex biological mixtures subjected to a denaturing air‐water interface. The time‐dependent loss of thioflavin T fluorescence that we interpreted previously as disaggregation is due to increased adsorption of Aβ amyloid to the surfaces of multiwell plates and Eppendorf tubes in the presence of biological extracts. As the proteins in biological extracts denature over time at the air‐water interface due to agitation/shaking, their adsorption increases, in turn promoting adsorption of amyloid fibrils. We delineate important control experiments that quantify the extent of amyloid adsorption to the surface of plastic and quartz containers. Based on the results described in this article, we conclude that our interpretation of the kinetic fibril disaggregation assay data previously reported in Bieschke et al., Protein Sci 2009;18:2231–2241 and Murray et al., Protein Sci 2010;19:836–846 is invalid when used as evidence for a disaggregase activity. Thus, we correct the two prior publications reporting that worm or mammalian cell extracts disaggregate Aβ amyloid fibrils in vitro at 37°C (see Corrigenda in this issue of Protein Science). We apologize for misinterpreting our previous data and for any confounding experimental efforts this may have caused.  相似文献   

9.
The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.  相似文献   

10.

Background

Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD), amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils.

Results

We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC) specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type II diabetes, demonstrating its generic specificity for amyloid fibrils.

Conclusion

Since the fibril specific antibodies are conformation dependent, sequence-independent, and recognize epitopes that are distinct from those present in prefibrillar oligomers, they may have broad utility for detecting and characterizing the accumulation of amyloid fibrils and fibrillar type oligomers in degenerative diseases.  相似文献   

11.
12.
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 × 10− 13 to 1.2 × 10− 6 μM− 3 without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.  相似文献   

13.
We develop a theory for three states of equilibrium of amyloid peptides: the monomer, oligomer, and fibril. We assume that the oligomeric state is a disordered micellelike collection of a few peptide chains held together loosely by hydrophobic interactions into a spherical hydrophobic core. We assume that fibrillar amyloid chains are aligned and further stabilized by steric zipper interactions—hydrogen bonding, steric packing, and specific hydrophobic side-chain contacts. The model makes a broad set of predictions that are consistent with experimental results: 1), Similar to surfactant micellization, amyloid oligomerization should increase with peptide concentration in solution. 2), The onset of fibrillization limits the concentration of oligomers in the solution. 3), The extent of Aβ fibrillization increases with peptide concentration. 4), The predicted average fibril length versus monomer concentration agrees with data on α-synuclein. 5), Full fibril length distributions agree with data on α-synuclein. 6), Denaturants should melt out fibrils. And finally, 7), added salt should stabilize fibrils by reducing repulsions between amyloid peptide chains. It is of interest that small changes in solvent conditions can tip the equilibrium balance between oligomer and fibril and cause large changes in rates through effects on the transition-state barrier. This model may provide useful insights into the physical processes underlying amyloid diseases.  相似文献   

14.
Kitts CC  Beke-Somfai T  Nordén B 《Biochemistry》2011,50(17):3451-3461
Michler's hydrol blue (MHB) is investigated with respect to photophysical properties in varied solvent environment and when bound to insulin and lysozyme fibrils. The MHB chromophore is shown to act like a molecular rotor and bind well to amyloid fibrils, where it exhibits a characteristic red-shift in its excitation spectrum and an increase in the emission quantum yield upon binding. MHB is more sensitive to environmental changes than Thioflavin T (ThT) and furthermore, in contrast to the latter amyloid probe, can differentiate between insulin and lysozyme fibrils by a more red-shifted excitation spectrum for insulin fibrils. To support the experimental observations, time-dependent density functional theory (TDDFT) calculations were performed on MHB at several levels of theory. The predicted changes of spectral properties as a function of the environment are in good agreement with the experimental results. Linear dichroism (LD) is used to determine the orientation of the MHB within the fibrils. It was shown through LD and molecular modeling that MHB aligns itself preferentially parallel with the amyloid fiber at an angle of 14°-22° to the fibril axis and along the grooves of the β-sheet.  相似文献   

15.
W Colon  J W Kelly 《Biochemistry》1992,31(36):8654-8660
Amyloid diseases are caused by the self-assembly of a given protein into an insoluble cross-beta-sheet quaternary structural form which is pathogenic. An understanding of the biochemical mechanism of amyloid fibril formation should prove useful in understanding amyloid disease. Toward this end, a procedure for the conversion of the amyloidogenic protein transthyretin into amyloid fibrils under conditions which mimic the acidic environment of a lysosome has been developed. Association of a structured transthyretin denaturation intermediate is sufficient for amyloid fibril formation in vitro. The rate of fibril formation is pH dependent with significant rates being observed at pHs accessible within the lysosome (3.6-4.8). Far-UV CD spectroscopic studies suggest that transthyretin retains its secondary structural features at pHs where fibrils are formed. Near-UV CD studies demonstrate that transthyretin has retained the majority of its tertiary structure during fibril formation as well. Near-UV CD analysis in combination with glutaraldehyde cross-linking studies suggests that a pH-mediated tetramer to monomer transition is operative in the pH range where fibril formation occurs. The rate of fibril formation decreases markedly at pHs below pH 3.6, consistent with denaturation to a monomeric TTR intermediate which has lost its native tertiary structure and capability to form fibrils. It is difficult to specify with certainty which quaternary structural form of transthyretin is the amyloidogenic intermediate at this time. These difficulties arise because the maximal rate of fibril formation occurs at pH 3.6 where tetramer, traces of dimer, and significant amounts of monomer are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
S-carboxymethylated (SCM) κ-casein forms in vitro fibrils that display several characteristics of amyloid fibrils, although the protein is unrelated to amyloid diseases. In order to get insight into the processes that prevent the formation of amyloid fibrils made of κ-caseins in milk, we have characterized in detail the reaction and the roles of its possible effectors: glycosylation and other caseins. Given that native κ-casein occurs as a heterogeneous mixture of carbohydrate-free and carbohydrate-containing chains, kinetics of fibril formation were performed on purified glycosylated and unglycosylated SCM κ-caseins using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and Fourier transform infrared spectroscopy for morphological and structural analyses. Both unglycosylated and glycosylated SCM κ-caseins have the ability to fibrillate. Kinetic data indicate that the fibril formation rate increases with SCM κ-casein concentration but reaches a plateau at high concentrations, for both the unglycosylated and glycosylated forms. Therefore, a conformational rearrangement is the rate-limiting step in fibril growth of SCM κ-casein. Transmission electron microscopy images indicate the presence of 10- to 12-nm spherical particles prior to the appearance of amyloid structure. Fourier transform infrared spectroscopy spectra reveal a conformational change within these micellar aggregates during the fibrillation. Fibrils are helical ribbons with a pitch of about 120-130 nm and a width of 10-12 nm. Taken together, these findings suggest a model of aggregation during which the SCM κ-casein monomer is in rapid equilibrium with a micellar aggregate that subsequently undergoes a conformational rearrangement into a more organized species. These micelles assemble and this leads to the growing of amyloid fibrils. Addition of αs1-and β-caseins decreases the growth rate of fibrils. Their main effect was on the elongation rate, which became close to that of the limiting conformation change, leading to the appearance of a lag phase at the beginning of the kinetics.  相似文献   

17.
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Aβ, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig γ heavy chains. A γ1 heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Aβ monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig γ heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Aβ oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig γ heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.  相似文献   

18.
Pancreatic thiol proteinase inhibitor (PTPI), a variant of cystatin superfamily of cysteine protease inhibitors, has been isolated from pancreas of Capra hircus. In the present study, we examined the effects of acid denaturation and a co-solvent on PTPI with a focus on protein conformational changes and amyloid fibril formation. The results demonstrate that PTPI can form amyloid like fibrils. Acid denaturation as studied by CD and fluorescence spectroscopy showed that PTPI populates three partly unfolded species, a native like state at pH 3.0, a structured molten globule at pH 1.0 and partly unfolded species at pH 2.0, from each of which amyloid like fibrils grow as assessed by Thioflavin T (ThT) spectroscopy. Effect of trifluoroethanol (TFE) on acid induced states of PTPI was analyzed. TFE stabilized each of the three acid-induced intermediates at predenaturational concentrations (10%) and accelerated fibril formation. Morphology of the protein species at the beginning and end of reactions was observed using transmission electron microscopy. Solvent conditions were decisive for final fibril morphology. Biometals, Cu2+ and Zn2+ produced a concentration dependent decline in ThT fluorescence suggesting deaggregation of the fibrils. When added prior to amyloid fibril initiation 50 μM Cu2+ or 10 μM Zn2+ prevented any amyloid aggregation. Implications for therapeutics in view of Cu2+ and Zn2+ as essential micronutrients are suggested.  相似文献   

19.
Many proteins form amyloid-like fibrils in vitro under partially or highly unfolding conditions. Recently, we showed that the residual structure in highly unfolded state is closely related to amyloid fibril formation in hen lysozyme. Thus, to better understand the role of the residual structure on amyloid fibril formation, we focused on AL amyloidosis, which results from the extracellular deposition of monoclonal immunoglobulin light-chain variable domains (VLs) as insoluble fibrils. We examined the relationship between the residual structure and amyloid fibril formation on three λ6 recombinant VL (rVλ6) proteins, wild type, Jto, and Wil. Although rVλ6 proteins are highly unfolded in pH 2, 15N NMR transverse relaxation experiments revealed nonrandom structures in regions, which include some hydrophobic residues and a single disulfide bond, indicating the existence of residual structure in rVλ6 proteins. However, the residual structure of Wil was markedly disrupted compared with those of the other proteins, despite there being no significant differences in amino acid sequences. Fibrillation experiments revealed that Wil had a longer lag time for fibril formation than the others. When the single disulfide bond was reduced and alkylated, the residual structure was largely disrupted and fibril formation was delayed in all three rVλ6 proteins. It was suggested that the residual structure in highly unfolded state has a crucial role in amyloid fibril formation in many proteins, even pathogenic ones.  相似文献   

20.
Skeletal muscle disorder, inclusion-body myositis (IBM) has been known for accumulation of amyloid characteristic proteins in muscle. To understand the biophysical basis of IBM, the interaction of amyloid fibrils with skeletal myoblast cells (SMC) has been studied in vitro. Synthetic insulin fibrils and Aβ25-35 fibrils were used for this investigation. From the saturation binding analysis, the calculated dissociation constant (Kd) for insulin fibril and Aβ25-35 fibrils were 69.37 ± 11.17 nM and 115.60 ± 12.17 nM, respectively. The fibrillar insulin comparatively has higher affinity binding to SMC than Aβ fibrils. The competitive binding studies with native insulin showed that the amount of bound insulin fibril was significantly decreased due to displacement of native insulin. However, the presence of native insulin is not altered the binding of β-amyloid fibril. The cytotoxicity of insulin amyloid intermediates was measured. The pre-fibrillar intermediates of insulin showed significant toxicity (35%) as compared to matured fibrils. Myoblast treated with β-amyloid fibrils showed more oxidative damage than the insulin fibril. Cell differentiating action of amyloidic insulin was assayed by creatine kinase activity. The insulin fibril treated cells differentiated more slowly compared to native insulin. However, β-amyloid fibrils do not show cell differentiation property. These findings reinforce the hypothesis that accumulation of amyloid related proteins is significant for the pathological events that could lead to muscle degeneration and weakness in IBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号