首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses. BoNTs consist of a toxifying light chain (LC; 50 kDa) and a binding/translocating heavy chain (HC; 100 kDa) linked through a disulfide bond. A DNA fragment encoding type A Clostridium botulinum heavy chain (BoNT/A HC) was amplified by polymerase chain reaction and cloned into an E. coli PET-15b vector. In vitro translated [35S]BoNT/A HC was identified by anti-BoNT/A polyclonal antibodies, and was used to investigate the binding of the toxin to rat synaptosomes. The binding of [35S]BoNT/A HC to synaptosomes was abolished by 500-fold excess of cold BoNT/A, and by incubation with trypsin. Treatment of BoNT/A HC with anti-BoNT/A or GT1b blocked its binding to synaptosomes. The radioactive BoNT/A HC recognized three proteins corresponding to a molecular mass of 150 (P150), 120 (P120), and 75 (P75) kDa in rat and bovine synaptosomal preparations. These results represent the first successful expression of functional full-length BoNT heavy chain.  相似文献   

2.
Botulinum neurotoxin type A (BoNT/A) is the etiological agent responsible for botulism, a disease characterized by peripheral neuromuscular blockade. BoNT/A is produced by Clostridium botulinum as a single chain protein that is activated by proteolytic cleavage to form a 50 kDa light chain (LC, 448 amino acids) and a disulfide bond-linked 100 kDa heavy chain (HC, 847 amino acids). Whilst HC comprises the receptor binding and translocation domains, LC is a Zn2+-endopeptidase that cleaves at a single glutaminyl-arginine bond corresponding to residues 197 and 198 at the C-terminus of SNAP25. Cleavage of SNAP25 uncouples the neural exocytosis docking/fusion machinery. LC/A (LC 1-448) and several C-terminal deletion proteins of LC/A were engineered and expressed as His-tagged fusion proteins in Escherichia coli. LC 1-448 was purified, but precipitated upon storage. Approximately 40% of LC 1-448 was a covalent dimer due to the formation of inter-chain disulfide bond formation at Cys430. Conversion of Cys430 to Ser abolished dimer formation of LC 1-448, but did not improve solubility. Three C-terminal deletion peptides were engineered; LC 1-425 and LC 1-418 were expressed and could be purified as soluble and stable proteins, whilst LC 1-398 was soluble, but not stable to storage. Kinetic studies showed that LC 1-448 and LC 1-425 efficiently cleaved GST-SNAP25 and the fluorescent substrate SNAPtide, while LC 1-418 catalyzed the cleavage of both the SNAP25 and the fluorescent substrate SNAPtide with a similar Km, but at a 10-fold slower kcat. Thus, regions within the C-terminus of LC/A contribute to solubility, stability, and catalysis.  相似文献   

3.
The light chain of botulinum neurotoxin A (BoNT/A‐LC) is a Zn‐dependent protease that specifically cleaves SNAP25 of the SNARE complex, thereby impairing vesicle fusion and neurotransmitter release at neuromuscular junctions. The C‐terminus of SNAP25 (residues 141–206) retains full activity for BoNT/A‐LC‐catalyzed cleavage at P1‐P1' (Gln197‐Arg198). Using the structure of a complex between the C‐terminus of SNAP25 and BoNT/A‐LC as a model to design SNAP25‐derived pseudosubstrate inhibitors (SNAPIs) that prevent presentation of the scissile bond to the active site, we introduced multiple His residues to replace Ala‐Asn‐Gln‐Arg (residues 195–198) at the substrate cleavage site, with the intent to identify possible side‐chain interactions with the active site Zn. We also introduced multiple Gly residues between the P1‐P1' residues to explore the spatial tolerance within the active‐site cleft. Using a FRET substrate YsCsY, we compared a series of SNAPIs for inhibition of BoNT/A‐LC. Among the SNAPIs tested, several known cleavage‐resistant, single‐point mutants of SNAP25 were poor inhibitors, with most of the mutants losing binding affinity. Replacement with His at the active site did not improve inhibition over wildtype substrate. In contrast, Gly‐insertion mutants were not only resistant to cleavage, but also surprisingly showed enhanced affinity for BoNT/A‐LC. Two of the Gly‐insertion mutants exhibited 10‐fold lower IC50 values than the wildtype 66‐mer SNAP25 peptide. Our findings illustrate a scenario, where the induced fit between enzyme and bound pseudosubstrate fails to produce the strain and distortion required for catalysis to proceed.  相似文献   

4.
Botulinum neurotoxins (BoNTs) are the most lethal of biological substances, and are categorized as class A biothreat agents by the Centers for Disease Control and Prevention. There are currently no drugs to treat the deadly flaccid paralysis resulting from BoNT intoxication. Among the seven BoNT serotypes, the development of therapeutics to counter BoNT/A is a priority (due to its long half-life in the neuronal cytosol and its ease of production). In this regard, the BoNT/A enzyme light chain (LC) component, a zinc metalloprotease responsible for the intracellular cleavage of synaptosomal-associated protein of 25 kDa, is a desirable target for developing post-BoNT/A intoxication rescue therapeutics. In an earlier study, we reported the high throughput screening of a library containing 70,000 compounds, and uncovered a novel class of benzimidazole acrylonitrile-based BoNT/A LC inhibitors. Herein, we present both structure–activity relationships and a proposed mechanism of action for this novel inhibitor chemotype.  相似文献   

5.
Botulinum neurotoxin (BoNT) is the causative agent of botulism in humans and animals. Only BoNT serotype A subtype 1 (BoNT/A1) is used clinically because of its high potency and long duration of action. BoNT/A1 and BoNT/A subtype 2 (BoNT/A2) have a high degree of amino acid sequence similarity in the light chain (LC) (96%), whereas their N-and C-terminal heavy chain (HN and HC) differ by 13%. The LC acts as a zinc-dependent endopeptidase, HN as the translocation domain, and HC as the receptor-binding domain. BoNT/A2 and BoNT/A1 had similar potency in the mouse bioassay, but BoNT/A2 entered faster and more efficiently into neuronal cells. To identify the domains responsible for these characteristics, HN of BoNT/A1 and BoNT/A2 was exchanged to construct chimeric BoNT/A121 and BoNT/A212. After expression in Escherichia coli, chimeric and wild-type BoNT/As were purified as single-chain proteins and activated by conversion to disulfide-linked dichains. The toxicities of recombinant wild-type and chimeric BoNT/As were similar, but dropped to 60% compared with the values of native BoNT/As. The relative orders of SNAP-25 cleavage activity in neuronal cells and toxicity differed. BoNT/A121 and recombinant BoNT/A2 have similar SNAP-25 cleavage activity. BoNT/A2 HN is possibly responsible for the higher potency of BoNT/A2 than BoNT/A1.  相似文献   

6.
A unique strain of Clostridium botulinum serotype D 4947 produces toxin complexes that are composed of un-nicked components, including a neurotoxin (BoNT) and auxiliary proteins. This BoNT showed aberrant elution upon Superdex gel filtration, indicating a much lower molecular weight, due to hydrophobic interaction with the column. Limited trypsin proteolysis of BoNT produces two nicks; first nick yielded a BoNT 50 kDa light chain disulfide linked to a 100 kDa heavy chain (Hc), and a second nick arose in Hc C-terminal 10 kDa. The second nick occurred in the putative binding domain of the BoNT molecule and induced alterations in its secondary structure, leading to a significant reduction of mouse toxicity in comparison with that of the fully-activated singly nicked BoNT. These results help to clarify the role of the C-terminal half of the Hc in the oral toxicity of single-chain and more complex forms of BoNT.  相似文献   

7.
Botulinum neurotoxin serotype A (BoNT/A, 1296 residues) is a zinc metalloprotease that cleaves SNAP25 to inhibit the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. BoNT/A is a disulfide-linked di-chain protein composed of an N-terminal, thermolysin-like metalloprotease light chain domain (LC/A, 448 residues) and a C-terminal heavy chain domain (848 residues) that can be divided into two subdomains, a translocation subdomain and a receptor binding subdomain. LC/A cleaves SNAP25 between residues Gln197-Arg198 and, unlike thermolysin, recognizes an extended region of SNAP25 for cleavage. The structure of a recombinant LC/A (1-425) treated with EDTA (No-Zn LC/A) was determined. The overall structure of No-Zn LC/A is similar to that reported for the holotoxin, except that it lacks the Zn ion, indicating that the role of Zn is catalytic not structural. In addition, structures of a noncatalytic mutant LC/A (Arg362Ala/Tyr365Phe) complexed with and without an inhibitor, ArgHX, were determined. The overall structure and the active site conformation for the mutant are the same as wild type. When the inhibitor binds to the active site, the carbonyl and N-hydroxyl groups form a bidentate ligand to the Zn ion and the arginine moiety binds to Asp369, suggesting that the inhibitor-bound structure mimics a catalytic intermediate with the Arg moiety binding at the P1' site. Consistent with this model, mutation of Asp369 to Ala decreases the catalytic activity of LC/A by approximately 600-fold, and the residual activity is not inhibited by ArgHX. These results provide new information on the reaction mechanism and insight into the development of strategies for small molecule inhibitors of BoNTs.  相似文献   

8.
Botulinum neurotoxins (BoNT) are the most potent of all toxins. The 50 kDa N-terminal endopeptidase catalytic light chain (LC) of BoNT is located next to its central, putative translocation domain. After binding to the peripheral neurons, the central domain of BoNT helps the LC translocate into cytosol where its proteolytic action on SNARE (soluble NSF attachment protein receptor) proteins blocks exocytosis of acetyl choline leading to muscle paralysis and eventual death. The translocation domain also contains 105 Å -long stretch of ∼100 residues, known as “belt,” that crosses over and wraps around the LC to shield the active site from solvent. It is not known if the LC gets dissociated from the rest of the molecule in the cytosol before catalysis. To investigate the structural identity of the protease, we prepared four variants of type A BoNT (BoNT/A) LC, and compared their catalytic parameters with those of BoNT/A whole toxin. The four variants were LC + translocation domain, a trypsin-nicked LC + translocation domain, LC + belt, and a free LC. Our results showed that Km for a 17-residue SNAP-25 (synaptosomal associated protein of 25 kDa) peptide for these constructs was not very different, but the turnover number (k cat) for the free LC was 6-100-fold higher than those of its four variants. Moreover, none of the four variants of the LC was prone to autocatalysis. Our results clearly demonstrated that in vitro, the LC minus the rest of the molecule is the most catalytically active form. The results may have implication as to the identity of the active, toxic moiety of BoNT/A in vivo.  相似文献   

9.
目的:克隆突触小体相关蛋白(SNAP25)基因,原核表达、纯化并鉴定SNAP25蛋白。方法:PCR扩增SNAP25基因,克隆至表达质粒pTIG-Trx,转化大肠杆菌BL21(DE3)感受态细胞,IPTG诱导表达,Ni2+-NTA亲和层析纯化目的蛋白,SDS-PAGE及Western印迹分析肉毒神经毒素BoNT/A轻链对该蛋白的裂解情况。结果:构建了pTIG-SNAP25表达质粒,经IPTG诱导表达,目的蛋白占全菌蛋白的26.2%,表达形式为可溶性表达,表达量达115.4mg/L,纯化后蛋白纯度达95%以上;经SDS-PAGE及Western印迹分析,SNAP25蛋白可被BoNT/A轻链特异降解。结论:克隆了SNAP25基因,在原核系统中表达、纯化并鉴定了重组SNAP25蛋白。  相似文献   

10.
BackgroundA natural product analog, 3-(4-nitrophenyl)-7H-furo[3,2-g]chromen-7-one, which is a nitrophenyl psoralen (NPP) was found to be an effective inhibitor of botulinum neurotoxin type A (BoNT/A).MethodsIn this work, we performed enzyme inhibition kinetics and employed biochemical techniques such as isothermal calorimetry (ITC) and fluorescence spectroscopy as well as molecular modeling to examine the kinetics and binding mechanism of NPP inhibitor with BoNT/A LC.ResultsStudies of inhibition mechanism and binding dynamics of NPP to BoNT/A light chain (BoNT/A LC) showed that NPP is a mixed type inhibitor for the zinc endopeptidase activity, implying that at least part of the inhibitor-enzyme binding site may be different from the substrate-enzyme binding site. By using biochemical techniques, we demonstrated NPP forms a stable complex with BoNT/A LC. These observations were confirmed by Molecular Dynamics (MD) simulation, which demonstrates that NPP binds to the site near the active site.ConclusionThe NPP binding interferes with BoNT/A LC binding to the SNAP-25, hence, inhibits its cleavage. Based on these results, we propose a modified strategy for designing a molecule to enhance the efficiency of the inhibition against the neurotoxic effect of BoNT.General significanceInsights into the interactions of NPP with BoNT/A LC using biochemical and computational approaches will aid in the future development of effective countermeasures and better pharmacological strategies against botulism.  相似文献   

11.
Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)?1cm?1. These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

13.
Botulinum neurotoxin A (BoNT A) is a substrate of the Src family of tyrosine kinases. Here, we report that the BoNT A light chain (LC) is phosphorylated in the tyrosine-71 located at N-terminus. Covalent modification of this residue notably increases the thermal stability of the endopeptidase activity, without affecting its catalytic efficacy. Similarly, mutation of this residue specifically affected the protein stability but not its endopeptidase function. Fusion of the Tat-translocating domain to the N-terminus of the enzyme produced a cell permeable, functional enzyme, as evidenced by immunocytochemistry and by the cleavage of cytosolic SNAP25 in intact PC12 cells. Noteworthy, truncation of cellular SNAP25 was reduced in cells when the Src kinase activity was inhibited with a specific antagonist, implying that tyrosine phosphorylation of BoNT A LC modulates the in vivo proteolytic activity of the neurotoxin. Taken together, these findings substantiate the tenet that tyrosine phosphorylation of BoNT A LC could be an important modulatory strategy of the neurotoxin stability and suggest that the phosphorylated neurotoxin may be a relevant molecule in vivo.  相似文献   

14.
Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2–20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify?>?95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.  相似文献   

15.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. BoNT serotype A and serotype E cleave SNAP25 at residues 197-198 and 180-181, respectively. Unlike other zinc proteases, the BoNTs recognize extended regions of SNAP25 for cleavage. The basis for this extended substrate recognition and specificity is unclear. Saturation mutagenesis and deletion mapping identified residues 156-202 of SNAP25 as the optimal cleavage domain for BoNT/A, whereas the optimal cleavage domain for BoNT/E was shorter, comprising residues 167-186 of SNAP25. Two sub-sites were resolved within each optimal cleavage domain, which included a recognition or active site (AS) domain that contained the site of cleavage and a binding (B) domain, which contributed to substrate affinity. Within the AS domains, the P1', P3, and P5 sites of SNAP25 contributed to scissile bond cleavage by LC/A, whereas the P1' and P2 sites of SNAP25 contributed to scissile bond cleavage by LC/E. These studies provide insight into the development of strategies for small molecule inhibitors of the BoNTs.  相似文献   

16.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

17.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.  相似文献   

18.
A full-length synthetic gene encoding the light chain of botulinum neurotoxin serotype B, approximately 50 kDa (BoNT/B LC), has been cloned into a bacterial expression vector pET24a+. BoNT/B LC was expressed in Escherichia coli BL21.DE3.pLysS and isolated from the soluble fraction. The resultant protein was purified to homogeneity by cation chromatography and was determined to be >98% pure as assessed by SDS-polyacrylamide gel stained with SilverXpress and analyzed by densitometry. Mass spectroscopic analysis indicated the protein to be 50.8 kDa, which equaled the theoretically expected mass. N-terminal sequencing of the purified protein showed the sequence corresponded to the known reported sequence. The recombinant BoNT/B light chain was found to be highly stable, catalytically active, and has been used to prepare antisera that neutralizes against BoNT/B challenge. Characterization of the protein including pH, temperature, and the stability of the protein in the presence or absence of zinc is described within. The influence of pH differences, buffer, and added zinc on secondary and tertiary structure of BoNT/B light chain was analyzed by circular dichroism and tryptophan fluorescence measurements. Optimal conditions for obtaining maximum metalloprotease activity and stabilizing the protein for long term storage were determined. We further analyzed the thermal denaturation of BoNT/B LC as a function of temperature to probe the pH and added zinc effects on light chain stability. The synthetic BoNT/B LC has been found to be highly active on its substrate (vesicle associated membrane protein-2) and, therefore, can serve as a useful reagent for BoNT/B research.  相似文献   

19.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

20.
Botulinum neurotoxin light chain (BoNT LC, 50 kDa) is responsible for the zinc endopeptidase activity specific for proteins of neuroexocytosis apparatus. We describe the expression of recombinant type A BoNT LC in Escherichia coli as well as the purification and characterization of the recombinant protein. A high level of expression of BoNT/A LC was obtained by an extended postinduction time of 15 h at 30 degrees C. Recombinant BoNT/A LC was isolated from an Ni(2+) column. Due to its high pI ( approximately 8.7), purification was achieved by a single step of passing the protein through anion-exchange chromatography at pH 8.0 without the need of elution. The purified recombinant BoNT/A LC retained proteolytic activity and had a secondary structure similar to that of native LC determined by CD measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号