首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

2.
在电离辐射等因素造成的DNA损伤修复信号传导过程中,共济失调毛细血管扩张症突变基因(ATM)起关键作用。同时,ATM属于P13K家族成员,其功能与保持端粒长度有关。端粒是真核细胞内染色体末端的重复的DNA序列,端粒的长短和稳定性决定了细胞的寿命。ATM突变导致端粒的不稳定性,包括端粒连接、端粒染色质结构变化,影响端粒聚集等。  相似文献   

3.
  相似文献   

4.
The Ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are activated by DNA double-strand breaks (DSBs). These DSBs occur in the context of chromatin but how chromatin influences the activation of these kinases is not known. Here we show that loss of the replication-dependent chromatin assembly factors ASF1A/B or CAF-1 compromises ATM activation, while augmenting DNA-PKcs activation, in response to DNA DSBs. Cells deficient in ASF1A/B or CAF-1 exhibit reduced histone H4 lysine 16 acetylation (H4K16ac), a histone mark known to promote ATM activation. ASF1A interacts with the histone acetyl transferase, hMOF that mediates H4K16ac. ASF1A depletion leads to increased recruitment of DNA-PKcs to DSBs. We propose normal chromatin assembly and H4K16ac during DNA replication is required to regulate ATM and DNA-PKcs activity in response to the subsequent induction of DNA DSBs.  相似文献   

5.
The toxic response of cultured human colon epithelial-FHC cells to methyl isocyanate was investigated with regard to genomic instability. Qualitative and quantitative assessments of the extent of phosphorylation of DNA damage signaling factors such as ATM, γH2AX and p53, was increased in treated cells compared to controls. At the same time, many treated cells were arrested at the G2/M phase of the cell cycle, and had an elevated apoptotic index and increased inflammatory cytokine levels. Cytogenetic analyses revealed varied chromosomal anomalies, with abnormal expression of pericentrin protein. Analysis through ISSR PCR demonstrated increased microsatellite instability. The results imply that isocyanates can cause genomic instability in colonocytes.  相似文献   

6.
7.
8.
Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.  相似文献   

9.
Ataxia telangiectasia (A-T) is a human disease caused by ATM deficiency characterized among other symptoms by radiosensitivity, cancer, sterility, immunodeficiency and neurological defects. ATM controls several aspects of cell cycle and promotes repair of double strand breaks (DSBs). This probably accounts for most of A-T clinical manifestations. However, an impaired response to reactive oxygen species (ROS) might also contribute to A-T pathogenesis. Here, we show that ATM promotes an anti-oxidant response by regulating the pentose phosphate pathway (PPP). ATM activation induces glucose-6-phosphate dehydrogenase (G6PD) activity, the limiting enzyme of the PPP responsible for the production of NADPH, an essential anti-oxidant cofactor. ATM promotes Hsp27 phosphorylation and binding to G6PD, stimulating its activity. We also show that ATM-dependent PPP stimulation increases nucleotide production and that G6PD-deficient cells are impaired for DSB repair. These data suggest that ATM protects cells from ROS accumulation by stimulating NADPH production and promoting the synthesis of nucleotides required for the repair of DSBs.  相似文献   

10.
The phenomenal proliferation of scientific studies into the nature of induced pluripotent stem (iPS) cells following publication of the findings of Takahashi and Yamanaka little more than 2 years ago, have significantly expanded our understanding of cellular mechanisms relating to cell lineage, differentiation, and proliferation. While the full potential of iPS cell lineages for both scientific tool and therapeutic applications is as yet unclear, findings from several lines of investigation suggests that multipotential and terminally differentiated cells from an array of cell types are competent to undergo epigenetic reprogramming to a pluripotential state. The nature of this pluripotential state appears to be similar to, but not identical with that previously described for embryonic stem (ES) cells. Understanding the nature of this induced reprogrammed state will be critical to determining the full potential of iPS cells. Recently, this issue has been examined through an integrated analysis of the genome in fully and partially reprogrammed iPS cell lineages. These results provide a window onto the temporal components of reprogramming and suggest mechanisms by which the efficacy of reprogramming can be enhanced.  相似文献   

11.
Ataxia-telangiectasia is a human syndrome resulting from mutations of the ATM protein kinase that is characterized by radiation sensitivity and neurodegeneration. Although neuroprotective, the molecular details of ATM function in the nervous system are uncertain. However, in the mouse, Atm is essential for ionizing radiation-induced apoptosis in select postmitotic populations of the developing nervous system. Atm-dependent apoptosis in the nervous system also requires p53, consistent with the well-established link of p53 as a major substrate of ATM. Furthermore, the proapoptotic effector Bax is also required for most, but not all, Atm-dependent apoptosis. Therefore, after DNA damage in the developing nervous system, Atm initiates a p53-dependent apoptotic cascade in differentiating neural cells. Together, these data suggest ATM-dependent apoptosis may be important for elimination of neural cells that have accumulated genomic damage during development, thus preventing dysfunction of these cells later in life.  相似文献   

12.
13.
Studies revealed that Nijmegen Breakage Syndrome protein 1 (NBS1) plays an important role in maintaining genome stability, but the underlying mechanism is controversial and elusive. Our results using clinical samples showed that NBS1 was involved in ataxia-telangiectasia mutated (ATM)-dependent pathway. NBS1 deficiency severely affected the phosphorylation of ATM as well as its downstream targets. BrdU proliferation assay revealed a delay of NBS cells in inhibiting DNA synthesis after Doxorubicin (Dox) treatment. In addition, under higher concentrations of Dox, NBS cells exhibited a much lower level of apoptosis compared to their normal counterparts, indicating a resistance to Dox treatment. Accelerated telomere shortening was also observed in NBS fibroblasts, consistent with an early onset of cellular replicative senescence in vitro. This abnormality may be due to the shelterin protein telomeric binding factor 2 (TRF2) which was found to be upregulated in NBS fibroblasts. The dysregulation of telomere shortening rate and of TRF2 expression level leads to telomere fusions and cellular aneuploidy in NBS cells. Collectively, our results suggest a possible mechanism that NBS1 deficiency simultaneously affects ATM-dependent DNA damage signaling and TRF2-regulated telomere maintenance, which synergistically lead to genomic abnormalities.  相似文献   

14.
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.  相似文献   

15.
A plethora of clinically distinct human disorders exist whose underlying cause is a defect in the response to or repair of DNA damage. The clinical spectrum of these conditions provides evidence for the role of the DNA damage response (DDR) in mediating diverse processes such as genomic stability, immune system function and normal human development. Cell lines from these disorders provide a valuable resource to help dissect the consequences of compromised DDR at the molecular level. Here we will discuss some well known, less well known and ‘novel’ DDR defective disorders with particular reference to the functional interplay between the DNA damage response and cell cycle checkpoints. We will describe recent advances in further delineating the genetic basis of Seckel syndrome and microcephalic osteodysplastic primordial dwarfism type II, which have shed more light on the interplay between the DDR, cycle progression and centrosomes. We will also overview recent developments concerning haploinsufficiency of DDR components and their association with certain genomic disorders such as Miller–Dieker lissencephaly syndrome and Williams–Beuren syndrome. Finally, we will discuss how defects in the DDR result in some unexpected clinical features before describing how the nature of a DDR defect impacts on the management and treatment of individuals with these conditions.  相似文献   

16.
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied by apoptosis. An antioxidant prevented telomere loss and genomic instability in cells with dysfunctional mitochondria, suggesting that reactive oxygen species are mediators linking mitochondrial dysfunction and genomic instability. Further, nuclear transfer protected genomes from telomere dysfunction and promoted cell survival by reconstitution with functional mitochondria. This work links mitochondrial dysfunction and genomic instability and may provide new therapeutic strategies to combat certain mitochondrial and aging-associated pathologies.  相似文献   

17.
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.  相似文献   

18.
The ability of our cells to maintain genomic integrity is fundamental for protection from cancer development. Central to this process is the ability of cells to recognize and repair DNA damage and progress through the cell cycle in a regulated and orderly manner. In addition, protection of chromosome ends through the proper assembly of telomeres prevents loss of genetic information and aberrant chromosome fusions. Cells derived from patients with ataxia-telangiectasia (A-T) show defects in cell cycle regulation, abnormal responses to DNA breakage, and chromosomal end-to-end fusions. The identification and characterization of the ATM (ataxia-telangiectasia, mutated) gene product has provided an essential tool for researchers in elucidating cellular mechanisms involved in cell cycle control, DNA repair, and chromosomal stability.  相似文献   

19.
20.

Background

Human induced pluripotent stem cells (iPSCs) have a wide range of applications throughout the fields of basic research, disease modeling and drug screening. Epigenetic instable iPSCs with aberrant DNA methylation may divide and differentiate into cancer cells. Unfortunately, little effort has been taken to compare the epigenetic variation in iPSCs with that in differentiated cells. Here, we developed an analytical procedure to decipher the DNA methylation heterogeneity of mixed cells and further exploited it to quantitatively assess the DNA methylation variation in the methylomes of adipose-derived stem cells (ADS), mature adipocytes differentiated from ADS cells (ADS-adipose) and iPSCs reprogrammed from ADS cells (ADS-iPSCs).

Results

We observed that the degree of DNA methylation variation varies across distinct genomic regions with promoter and 5’UTR regions exhibiting low methylation variation and Satellite showing high methylation variation. Compared with differentiated cells, ADS-iPSCs possess globally decreased methylation variation, in particular in repetitive elements. Interestingly, DNA methylation variation decreases in promoter regions during differentiation but increases during reprogramming. Methylation variation in promoter regions is negatively correlated with gene expression. In addition, genes showing a bipolar methylation pattern, with both completely methylated and completely unmethylated reads, are related to the carbohydrate metabolic process, cellular development, cellular growth, proliferation, etc.

Conclusions

This study delivers a way to detect cell-subset specific methylation genes in a mixed cell population and provides a better understanding of methylation dynamics during stem cell differentiation and reprogramming.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-978) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号