共查询到20条相似文献,搜索用时 0 毫秒
1.
Tennant-Eyles AJ Moffitt H Whitehouse CA Roberts RG 《Biochemical and biophysical research communications》2011,410(3):471-477
Myo-inositol is one of the major organic osmolytes in the brain and the kidney. The accumulation of intracellular organic osmolytes allows cells to regulate intracellular osmolality without altering cytoplasmic ionic strength and to adapt to hyperosmotic conditions. Two types of myo-inositol transporters, sodium/myo-inositol transporter and H+/myo-inositol transporter (HMIT), have been identified. Sodium/myo-inositol transporters are induced by osmotic stress and might be involved in the intracellular accumulation of myo-inositol in mammals. The role of HMIT, however, remains unknown. In the present study, we characterized three Caenorhabditis elegansHMIT genes, hmit-1.1, hmit-1.2, and hmit-1.3. hmit-1.1 was expressed in the intestine, and hmit-1.2 was expressed in the glia and the excretory canal, which is an osmotic regulatory organ that is functionally analogous to the kidney. hmit-1.3 was expressed in the intestine and the glia. The expression of hmit-1.1 and hmit-1.2 but not hmit-1.3, was markedly induced under hyperosmotic conditions. Animals with mutant hmit-1.1 and hmit-1.2 were hypersensitive to osmotic stress. The defects of hmit-1.1 and hmit-1.2 mutants were rescued by hmit-1.1 and hmit-1.2 transgenes, respectively, and by modified human HMIT. In human cell lines, HMIT expression was induced in hyperosmotic conditions. These findings indicate that the C. elegans HMIT family has a crucial role in the osmoprotective response. 相似文献
2.
3.
Hosoda A Maruyama A Oikawa D Oshima Y Komachi Y Kanai G Sato H Iwawaki T 《Biochemical and biophysical research communications》2011,(1):37-41
The endoplasmic reticulum (ER) is an organelle in which most membrane and secretory proteins are synthesized. If these proteins are not folded correctly, unfolded proteins accumulate in the ER lumen, causing a cellular situation known as ER stress. Recently, many studies on the relationship between ER stress and diseases have been reported. Thus, studies of ER stress in vivo should yield information that is useful in pathology. Model mice have been developed as a powerful tool to visualize ER stress in vivo, but this approach depends on transgenic technology. Here, we report on a method of detecting ER stress in vivo by Raman spectroscopy. Our experiments revealed that two specific Raman bands were reduced in both cultured cells and animal tissues in an ER stress dependent manner. This suggests that Raman spectroscopy could be a useful tool to detect ER stress in vivo without transgenic technology. 相似文献
4.
Cheong YH Kim MK Son MH Kaang BK 《Biochemical and biophysical research communications》2011,(1):220-225
Repeated fluctuation in plasma glucose levels, as well as chronic hyperglycemia, is an important phenomenon frequently observed in diabetic patients. Recently, several studies have reported that glucose fluctuation, compared to chronic hyperglycemia, mediates more adverse effects due to induced oxidative and/or endoplasmic reticulum (ER) stress. In type 2 diabetes, stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) has been found to be reduced, and the results of recent studies have shown that the expression of the GLP-1 receptor (GLP-1R) is reduced by chronic hyperglycemia. However, GLP-1R signaling in glucose fluctuation has not been elucidated clearly. In this study, we hypothesized that intermittent high glucose (IHG) conditions also reduced GLP-1-mediated cellular signaling via reduction in GLP-1R expression. To evaluate this hypothesis, rat insulinoma cells (INS-1) were exposed for 72 h to either sustained high glucose (SHG) conditions (30 mM glucose) or IHG conditions (11 and 30 mM glucose, alternating every 12 h). In comparison to both the SHG and control groups, IHG conditions induced a more significant impairment of insulin release and calcium influx in response to 1 nM GLP-1 treatment. In addition, the activity of caspase 3/7 as well as the gene expression of binding protein (Bip) and C/EBP homologous protein (CHOP), molecular markers of ER stress, was significantly higher in IHG-treated cells than in SHG-treated cells. Interestingly, the expression level of GLP-1R was significantly lower under IHG conditions than under SHG conditions. Collectively, these findings indicated that glucose fluctuation reduces GLP-1R expression through ER stress more profoundly than sustained hyperglycemia, which may contribute to the diminished response of GLP-1. 相似文献
5.
Nonis A Scortegagna M Nonis A Ruperti B 《Biochemical and biophysical research communications》2011,415(4):707-708
An essential pre-requisite to perform sound quantitative real-time polymerase chain reaction (qPCR) assays is to design outstanding primer pairs. This means they must have a good efficiency and be not prone to produce multiple amplicons or primer dimer products. To circumvent these issues, several softwares are available to help primer design. Although satisfactory computer-aided primer design tools are available for standard PCR, less efforts were done to provide specific methods for selection of optimal primer pairs for qPCR. We have developed PRaTo a web-based tool that enables checking and ranking of primers pairs for their attitude to perform optimally and reliably when used in qPCR experiments. PRaTo is available at http://prato.daapv.unipd.it. 相似文献
6.
Shen M Siu S Byrd S Edelmann KH Patel N Ketchem RR Mehlin C Arnett HA Hasegawa H 《Experimental cell research》2011,(7):976-993
Interleukin-31 (IL-31) is a member of the four helical-bundle gp130/IL-6 cytokine family. Despite its implicated roles in inflammatory diseases, the biosynthetic processes of IL-31 have been poorly investigated. A detailed understanding of IL-31 biosynthesis and the nature of ligand–receptor interactions can provide insights into effective strategies for the design of therapeutic approaches. By using various heterologous protein expression systems, we demonstrated that murine IL-31 was secreted as inter-molecularly disulfide-bonded covalent aggregates. Covalently aggregated IL-31 appeared while trafficking in the secretory pathway, but was not actively retained in the ER. The aggregate formation was not caused by a dysfunctional ER quality control mechanism or an intrinsic limitation in protein folding capacity. Furthermore, secreted IL-31 aggregates were part of a large complex composed of various pleiotropic secretory factors and immune-stimulators. The extent and the heterogeneous nature of aggregates may imply that IL-31 was erroneously folded, but it was capable of signaling through cognate receptors. Mutagenesis revealed the promiscuity of all five cysteines in inter-molecular disulfide formation with components of the hetero-aggregates, but no cysteine was required for IL-31 secretion itself. Our present study not only illustrated various functions that cysteines perform during IL-31 biosynthesis and secretion, but also highlighted their potential roles in cytokine effector functions. 相似文献
7.
Pemmasani JK Pottinger TG Cairns MT 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2011,6(4):406-419
The production and welfare of intensively reared fish would be improved by reducing stress responsiveness. One approach to achieving this goal is selective breeding utilising stress-responsive genes as direct genetic markers of the desirable trait. As a first step in this process, microarray analysis has been carried out on liver tissues of rainbow trout selectively bred for high (HR) or low (LR) responsiveness to a stressor. Microarray hybridizations provided gene expression profiles for pooled samples of fish confined for 6 h, 24 h and 168 h and for individual fish (168 h only). 161 genes were shown to be differentially regulated in HR and LR fish during confinement exposure and eight of these gene expression profiles were validated by quantitative PCR. Genes of particular interest included intelectin-2 precursor which showed greater than 100-fold higher expression in HR fish compared to LR fish irrespective of whether the fish were confined or not; interferon inducible transmembrane protein 3 which was differentially stress-induced between the two lines; and hepatic pro-opiomelanocortin B (POMC B) which was upregulated during stress in HR fish but downregulated in LR fish. All these offer potential as direct markers of low stress responsiveness in a marker-assisted selection scheme. 相似文献
8.
9.
Structural and functional link between the mitochondrial network and the endoplasmic reticulum 总被引:1,自引:0,他引:1
Carlotta Giorgi Diego De Stefani Angela Bononi Rosario Rizzuto Paolo Pinton 《The international journal of biochemistry & cell biology》2009,41(10):1817-1827
Mitochondrial and endoplasmic reticulum (ER) networks are fundamental for the maintenance of cellular homeostasis and for determination of cell fate under stress conditions. Recent structural and functional studies revealed the interaction of these networks. These zones of close contact between ER and mitochondria called MAM (mitochondria associated membranes) support communication between the two organelles including bioenergetics and cell survival. The existence of macromolecular complexes in these contact sites has also been revealed. In this contribution, we will review: (i) the ER and mitochondria structure and their dynamics, (ii) the basic principles of ER mitochondrial Ca2+ transport, (iii) the physiological/pathological role of this cross-talk. 相似文献
10.
Watanabe N Aizaki H Matsuura T Kojima S Wakita T Suzuki T 《Biochemical and biophysical research communications》2011,(1):135-140
Erlin1 and erlin2 are highly homologous, ∼40 kDa, endoplasmic reticulum membrane proteins that assemble into a ring-shaped complex with a mass of ∼2 MDa. How this complex is formed is not understood, but appears to involve multiple interactions, including a coiled-coil region that mediates lower-order erlin assembly, and a short hydrophobic region, termed the “assembly domain”, that mediates higher-order assembly into ∼2 MDa complexes. Here we have used molecular modeling, mutagenesis and cross-linking to examine the role of the assembly domain in higher-order assembly. We find (i) that the assembly domains of erlin1 and erlin2 are amphipathic helices, (ii) that erlin1 alone and erlin2 alone can assemble into ∼2 MDa complexes, (iii) that higher-order assembly is strongly inhibited by point mutations to the assembly domain, (iv) that three interacting hydrophobic residues in the assembly domain and aromaticity are essential for higher-order assembly, and (iv) that while erlins1 and 2 are equally capable of forming lower-order homo- and hetero-oligomers, hetero-oligomers are the most prevalent form when erlin1 and erlin2 are co-expressed. Overall, we conclude that the ∼2 MDa erlin1/2 complex is composed of an assemblage of lower-order hetero-oligomers, probably heterotrimers, linked together by assembly domain hydrophobic residues. 相似文献
11.
The formation of multiple cysts in one or several organs is a characteristic of several human inherited diseases. Recent research suggests that problems in planar cell polarity may be the common denominator in polycystic diseases. Mutations in at least two genes are linked to autosomal dominant polycystic liver disease (PCLD), PRKCSH and SEC63. A recent study linked PRKCSH to the signaling- and cytoskeletal adaptor-component β-catenin. In a yeast two hybrid screen we identified the cytosolic protein nucleoredoxin (NRX) as an interaction partner of human Sec63. Since NRX is involved in the Wnt signaling pathways, we characterized this interaction. Thus, Sec63 is linked to the Wnt signaling pathways and this interaction may be the reason why mutations in SEC63 can lead to PCLD.
Structured summary
Sec63physically interacts with NRX by two hybrid(View interaction)NRXbinds to Sec63 by peptide array (View Interaction 1, 2)Sec63binds to NRX by pull down(View interaction)Sec63binds to NRX by peptide array (View Interaction 1, 2, 3) 相似文献12.
13.
《Autophagy》2013,9(4):622-623
Eukaryotic cells have developed sophisticated strategies to contend with environmental stresses faced in their lifetime. Endoplasmic reticulum (ER) stress occurs when the accumulation of unfolded proteins within the ER exceeds the folding capacity of ER chaperones. ER stress responses have been well characterized in animals and yeast, and autophagy has been suggested to play an important role in recovery from ER stress. In plants, the unfolded protein response signaling pathways have been studied, but changes in ER morphology and ER homeostasis during ER stress have not been analyzed previously. Autophagy has been reported to function in tolerance of several stress conditions in plants, including nutrient deprivation, salt and drought stresses, oxidative stress, and pathogen infection. However, whether autophagy also functions during ER stress has not been investigated. The goal of our study was to elucidate the role and regulation of autophagy during ER stress in Arabidopsis thaliana. 相似文献
14.
15.
The pancreatic ATP-sensitive potassium channels comprise two subunits: SUR1 and Kir6.2. Two SUR1 mutations, A116P and V187D, reduce channel activity causing persistent hyperinsulinemic hypoglycemia of infancy. We investigated whether these mutations cause temperature sensitive misfolding. We show that the processing defect of these mutants is temperature sensitive and these two mutations disrupt the association between SUR1 and Kir6.2 by causing misfolding in SUR1 at 37 degrees C but can be rescued at 18 degrees C. Extensive electrophysiological characterization of these mutants indicated that low temperature largely, if not completely, corrects the folding defect of these two SUR1 mutants observed at 37 degrees C. 相似文献
16.
A membrane preparation that contains proteins characteristic of the rough endoplasmic reticulum 总被引:1,自引:0,他引:1
A Amar-Costesec M Hortsch C Turu 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,62(3):281-288
We describe a procedure for disassembling rat liver rough microsomes, which allows the purification of the rough endoplasmic reticulum (ER) membrane. Membrane-bound ribosomes and adsorbed proteins are first detached by washing rough microsomes with 5 mM Na-pyrophosphate. In a second step, the vesicle membrane is opened by digitonin, with concomitant release of the luminal content. The purification is monitored at each step by electron microscopy, and by assaying chemical constituents (protein, phospholipid, RNA) and marker enzymes for the main subcellular organelles. The final membrane preparation is representative of the ER, since it contains 24.1% of the liver glucose 6-phosphatase with a relative specific activity of 14.2. Contaminants represent less than 5% of its protein content. SDS-polyacrylamide gel electrophoresis, followed by immunoblot analysis, reveals that the ribophorins I and II, two established markers of the rough (d) domain are still present in the final membrane preparation. It also contains the docking protein (or signal recognition particle receptor) and protein disulfide isomerase, and has conserved the functional capacity to remove co- and post-translationally the signal peptide of pre-secretory proteins. The membrane preparation is suitable for studies on the polypeptide composition of the d domain. 相似文献
17.
18.
Szczesna-Skorupa E Kemper B 《Biochemical and biophysical research communications》2011,415(2):405-409
Microsomal cytochrome P450s (CYPs) are anchored to the endoplasmic reticulum membrane by the N-terminal signal-anchor sequence which is predicted to insert into the membrane as a type 1 transmembrane helix with a luminally located N-terminus. We have mapped amino acids of the CYP2C1 signal-anchor, fused to Cys-free glutathione S-transferase, within the membrane by Cys-specific labeling with membrane-impermeant maleimide polyethylene glycol. At the C-terminal end of the signal-anchor, Trp-20 was mapped to the membrane–cytosol interface and Leu-19 was within the membrane. Unexpectedly, at the N-terminal end, Glu-2 and Pro-3 were mapped to the cytoplasmic side of the membrane rather than the luminal side as expected of a type 1 transmembrane helix. Similar results were observed for the N-terminal amino acids of the signal-anchor sequences of CYP3A4 and CYP2E1. These observations indicate that contrary to the current model of the signal-anchor of CYPs as a type 1 transmembrane helix, CYP2C1, CYP2E1, and CYP3A4 are monotopic membrane proteins with N-terminal signal-anchors that have a hairpin or wedge orientation in the membrane. 相似文献
19.
Andre C. Eaddy Rick G. Schnellmann 《Biochemical and biophysical research communications》2011,(1):424
Sarcoplasmic/endoplasmic reticulum (ER) Ca2+ is the most abundant store of intracellular Ca2+, and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca2+ in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca2+ indicator, to directly monitor changes in RPTC ER Ca2+. Fluo5F staining reflected ER Ca2+, resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca2+ pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca2+ ionophore caused more rapid ER Ca2+ release (55% and 75% decrease in fluorescence at 5 and 15 min).Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca2+. In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca2+ release. ER Ca2+ release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca2+ in live cells. 相似文献
20.
Germ cell-specific gene 1 targets testis-specific poly(A) polymerase to the endoplasmic reticulum through protein-protein interactions 总被引:1,自引:0,他引:1
Testis-specific poly(A) polymerase (TPAP) is a cytoplasmic poly(A) polymerase that is highly expressed in round spermatids. We identified germ cell-specific gene 1 (GSG1) as a TPAP interaction partner protein using yeast two-hybrid and coimmunoprecipitation assays. Subcellular fractionation analysis showed that GSG1 is exclusively localized in the endoplasmic reticulum (ER) of mouse testis where TPAP is also present. In NIH3T3 cells cotransfected with TPAP and GSG1, both proteins colocalize in the ER. Moreover, expression of GSG1 stimulates TPAP targeting to the ER, suggesting that interactions between the two proteins lead to the redistribution of TPAP from the cytosol to the ER. 相似文献