共查询到20条相似文献,搜索用时 15 毫秒
1.
Hiroko Nakatsukasa Mitsutoshi Tsukimoto Hitoshi Harada Shuji Kojima 《Biochemical and biophysical research communications》2011,409(1):114
Extracellular adenosine activates P1 receptors (A1, A2A, A2B, A3) on cellular membranes. Here, we investigated the involvement of P1 receptor-mediated signaling in differentiation to regulatory T cells (Treg). Treg were induced in vitro by incubating isolated CD4+CD62L+ naïve murine T cells under Treg-skewing conditions. Antagonists of A1 and A2B receptors suppressed the expression of Foxp3, a specific marker of Treg, and the production of IL-10, suggesting the involvement of A1 and A2B receptors in differentiation to Treg. We also investigated the effect of these antagonists on T cell activation, which is essential for differentiation to Treg, and found that A1 antagonist, but not A2B antagonist, suppressed T cell activation. We conclude that A1 and A2B receptors are both involved in differentiation to Treg, but through different mechanisms. Since A2B antagonist blocked differentiation to Treg without suppressing T cell activation, it is possible that blockade of A2B receptor would facilitate tumor immunity. 相似文献
2.
3.
The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections. 相似文献
4.
Liqing Xu Shigeki Tanaka Motoki Bonno Masaru Ido Masatoshi Kawai Hatsumi Yamamoto Yoshihiro Komada 《Cellular immunology》2014
Although CD4+CD25+ Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1. 相似文献
5.
Tischner D Wiegers GJ Fiegl H Drach M Villunger A 《Cell death and differentiation》2012,19(8):1277-1287
Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy. 相似文献
6.
7.
8.
Kuhfahl S Hauburger A Thieme T Groppe J Ihling C Tomic S Schutkowski M Sinz A Schwarz E 《Biochemical and biophysical research communications》2011,408(2):300-305
Proregions of bone morphogenetic proteins (BMPs) fulfill important biological functions as intramolecular chaperones and for extracellular targeting of the mature signal ligand. Knowledge of the structures of the proregions would contribute to a more comprehensive picture of the biological activities of the pro-forms of BMP growth factors. In this study, a protease resistant core domain of the proregions of three BMPs was identified. For a more detailed analysis, the core domain of the BMP-2 proregion was recombinantly produced. Unfolding/refolding experiments and spectroscopic analyses proved that the core domain can be obtained as a folded entity. Binding of the core domain to the mature growth factor was demonstrated by SPR. Via peptide microarray analysis, residues within the core fragment could be identified that engage in binding to the dimeric, mature domain. Our study reveals that diverse members of the BMP family share a common, independently folding core domain within the large proregions peculiar to TGF-β superfamily members that may serve as a scaffold for folding and assembly of the dimeric proprotein complexes. 相似文献
9.
Transcriptional regulation of connective tissue growth factor by sphingosine 1-phosphate in rat cultured mesangial cells 总被引:3,自引:0,他引:3
Connective tissue growth factor (CTGF) is induced by transforming growth factor-beta (TGF-beta) via Smad activation in mesangial cells. We recently reported that sphingosine 1-phosphate (S1P) induces CTGF expression in rat cultured mesangial cells. However, the mechanism by which S1P induces CTGF expression is unknown. The present study revealed that S1P-induced CTGF expression is mediated via pertussis toxin-insensitive pathways, which are involved in the activation of small GTPases of the Rho family and protein kinase C. We also showed by luciferase reporter assays and chromatin immunoprecipitation that S1P induces CTGF expression via Smad activation as TGF-beta does. 相似文献
10.
11.
Spermatogonial stem cells (SSCs) support life-long spermatogenesis by self-renewing and producing spermatogonia committed to differentiation. In vitro, SSCs form three-dimensional spermatogonial aggregates (clusters) when cultured with glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2); serial passaging of clusters results in long-term SSC maintenance and expansion. However, the role of these growth factors in controlling patterns of SSC division and fate decision has not been understood thoroughly. We report here that in a short-term culture, GDNF and FGF2 increase the number of dividing SSCs, but not the total SSC number, compared to a no-growth-factor condition. Since the total germ cell number increases with growth factors, these results suggest that GDNF and FGF2 promote a SSC division pattern that sustains the size of the stem cell pool while generating committed progenitors. Our data also show that SSC numbers increase when the cluster structure is disintegrated and cell–cell interaction in clusters is disrupted. Collectively, these results suggest that in this culture system, GDNF and FGF2 stimulate SSC divisions that promote self-renewal and differentiation in the SSC population, and imply that the destruction of the cluster structure, a potential in vitro niche, may contribute to SSC expansion. 相似文献
12.
Altenburg JD Harvey KA McCray S Xu Z Siddiqui RA 《Biochemical and biophysical research communications》2011,(2):427-432
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia. 相似文献
13.
The downregulation of PDX-1 expression plays an important role in development of type 2 diabetes. However, the negative regulator of PDX-1 expression is not well known. In this study, we analyzed the mouse PDX-1 promoter to characterize the effects of ATF3 on PDX-1 expression in pancreatic β-cells. Both thapsigargin treatment, an inducer of ER stress, and ATF3 expression decreased PDX-1 expression in pancreatic β-cells, MIN6N8. Furthermore, they also repressed the activity of −4.5 Kb promoter of mouse PDX-1 gene. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of 0.9 Kb PDX-1 promoter, whereas it did not affect the activity of 0.7 Kb PDX-1 promoter, suggesting that ATF3 responsive element is located between the −903 and −702. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds directly to the promoter region spanning from −759 to −738. Moreover, mutation of the putative ATF/CRE site between −752 and −745 abrogated ATF3-mediated transrepression of the PDX-1 promoter. PDX-1 was decreased in MIN6N8 cells treated with high glucose or high palmitate, whereas ATF3 was increased, indicating that ATF3 plays a role in hyperglycemia or hyperlipidemia-mediated downregulation of PDX-1 expression. Collectively, these results demonstrate that ATF3 represses PDX-1 expression via binding to an ATF3-responsive element in its promoter, which plays an important role in suppression of pancreatic β-cells function. 相似文献
14.
Nakatsukasa H Tsukimoto M Harada H Kojima S 《Biochemical and biophysical research communications》2011,(1):114-119
Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin–pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology. 相似文献
15.
Kerstin Geldmeyer-Hilt Guido Heine Björn Hartmann Ria Baumgrass Andreas Radbruch Margitta Worm 《Biochemical and biophysical research communications》2011,(4):699
1α,25-dihydroxyvitamin D3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naïve B cells. Naïve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naïve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naïve B cells, namely by reducing CD40 signaling. 相似文献
16.
S. Nurmenniemi P. Kuvaja S. Lehtonen I. Alahuhta R.K. Mattila T. Salo K.S. Selander P. Nyberg P. Lehenkari 《Experimental cell research》2010,316(16):2676-2682
Human mesenchymal stem cells (hMSCs) are multipotent cells that are found in the bone marrow. Inflammation and tissue damage mobilize MSCs and induce their migration towards the damaged site through mechanisms that are not well defined. Toll-like receptor-9 (TLR9) is a cellular receptor for microbial and vertebrate DNA. Stimulation of TLR9 induces inflammatory and invasive responses in TLR9-expressing cells. We studied here the expression of TLR9 in human MSCs and the effects of synthetic TLR9-agonists on their invasion. Constitutive expression of TLR9 was detected in human MSCs but the expression was suppressed when MSCs were induced to differentiate into osteoblasts. Using standard invasion assays and a novel organotypic culture model based on human myoma tissue, we discovered that stimulation with the TLR9 agonistic, CpG oligonucleotides increased the invasion capacity of undifferentiated MSCs. Simultaneously, an increase in MMP-13 synthesis and activity was detected in the CpG-activated MSCs. Addition of anti-MMP-13 antibody significantly diminished the CpG-induced hMSC invasion. We conclude that treatment with TLR9-ligands increases MSC invasiveness, and this process is at least partially MMP-13-mediated. 相似文献
17.
Kwon OH Park JL Kim M Kim JH Lee HC Kim HJ Noh SM Song KS Yoo HS Paik SG Kim SY Kim YS 《Biochemical and biophysical research communications》2011,(4):539-545
The LAMB3 and LAMC2 genes encode the laminin-5 β3 and γ2 chains, respectively, which are parts of laminin-5, one of the major components of the basement membrane zone. Here, we report the frequent up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Gene expression data analysis showed that LAMB3 and LAMC2 were up-regulated in various tumor tissues. Combined analyses of DNA methylation and gene expression of both genes in gastric cancer cell lines and tissues showed that DNA hypomethylation was associated with the up-regulation of both genes. Treatment with a methylation inhibitor induced LAMB3 and LAMC2 expression in gastric cancer cell lines in which both genes were silenced. By chromatin immunoprecipitation assay, we showed the activation histone mark H3K4me3 was associated with the expression of both genes. The expression level of LAMB3 affected multiple malignant phenotypes in gastric cancer cell lines. These results suggest that epigenetic activation of LAMB3 and LAMC2 may play an important role in gastric carcinogenesis. 相似文献
18.
Michael J. Shapiro Rhianna Sundsbak Virginia Smith Shapiro 《Biochemical and biophysical research communications》2010,396(4):994-998
The activation of T cells and the initiation of an immune response is tightly controlled by both positive and negative regulators. Two adaptors which function as negative regulators of T cell activation are ALX and LAX. ALX constitutively associates with LAX in T cells, and T cells from mice deficient in ALX and LAX display similar hyper-responsiveness upon T cell receptor (TCR)/CD28 stimulation, including increased production of interleukin-2. During T cell activation, ALX is inducibly phosphorylated, however the site of ALX phosphorylation had not been previously identified and the role of phosphorylation in the inhibitory function of ALX was not known. Here, using mass spectrometry, we demonstrate that ALX is phosphorylated on a serine at position 318. Substitution of alanine for serine at this position (ALX S318A) leads to an abrogation of the mobility shift in ALX induced upon TCR/CD28 stimulation. However, ALX S318A retained the ability to bind to and stimulate tyrosine phosphorylation of LAX. In addition, overexpression of ALX S318A inhibited RE/AP activation upon TCR/CD28 stimulation to a similar extent as wild-type ALX. Therefore, although ALX is inducibly phosphorylated upon TCR/CD28 stimulation, this phosphorylation is not required for ALX to inhibit T cell activation. 相似文献
19.
Lukosz M Mlynek A Czypiorski P Altschmied J Haendeler J 《Biochemical and biophysical research communications》2011,(4):648-653
Migratory capacity and resistance to apoptosis are crucial for proper endothelial function. In a screen for anti-apoptotic genes in a breast cancer cell line, we identified Grainyhead like 3 (GRHL3). Therefore, the aim of our study was to investigate whether GRHL3 is expressed in endothelial cells and moreover, to determine its role in migration, apoptosis and senescence. GRHL3 is expressed in human endothelial cells. GRHL3 is required for endothelial cell migration. The underlying mechanism is independent of vascular endothelial growth factor. GRHL3 induces Akt and endothelial nitric oxide synthase phosphorylation and its expression is increased by physiological concentrations of nitric oxide. Nitric oxide dependent migration is completely dependent on GRHL3 expression. Moreover, GRHL3 inhibits apoptosis of endothelial cells in an eNOS-dependent manner. Thus, loss of GRHL3 may result in endothelial dysfunction in vivo. One may consider new therapeutic strategies with the aim to conserve GRHL3 expression in the vasculature. 相似文献
20.
Plasmodium yoelii: distinct CD4(+)CD25(+) regulatory T cell responses during the early stages of infection in susceptible and resistant mice 总被引:7,自引:0,他引:7
The outcome of experimental murine infection with different strains of malaria parasites, ranging from spontaneous cure to death, depends largely on the establishment of effective Th1 responses during the early stages of infection. Here we describe the disparity in CD4(+)CD25(+) regulatory T cell (Treg) responses during the early stages of infection with the highly virulent Plasmodium yoelii 17XL strain in susceptible (BALB/c) and resistant (DBA/2) mice. An increased proportion of Tregs 3-4 days post inoculation, co-occurring with elevated IL-10 levels, is observed in BALB/c but not in DBA/2 mice. These findings suggest that Treg proliferation might be causally associated with the suppression of Th1 responses during early malaria infection, leading to increase parasitemia and mortality in BALB/c mice, possibly in an IL-10-dependent manner. 相似文献