首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs) have been recognized to play a pivotal role in matrix remodeling following myocardial infarction (MI). The aims of the present study were to examine the expression profile of MMPs/TIMP-1 after MI and to determine whether angiotensin II receptor (ATR) blockade improves MMPs/TIMP-1 balance. Compared with sham-operated rats, in vivo MI-induced a significant elevation of MMP-2, MMP-3 and MMP-9 levels and a marked reduction of TIMP-1 and fibronectin (FN) expressions in infarcted left ventricular free wall (LVFW) and hypertrophic interventricular septum (IS) but not in non-infarcted right ventricle (RV). In addition, regional MI increased MMP-2, MMP-3 and MMP-9, while decreased TIMP-1 and FN in infarcted LVFW and hypertrophic IS compared with the non-infarcted RV. Compared with vehicle-treated MI rats, oral valsartan, but not PD123319, limited infarct size, normalized MMPs/TIMP-1 balance and restored FN level. The present findings might further our understanding of the regulatory mechanisms of valsartan in myocardial remodeling after MI.  相似文献   

2.
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.  相似文献   

3.
Tao ZY  Cavasin MA  Yang F  Liu YH  Yang XP 《Life sciences》2004,74(12):1561-1572
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and inflammatory response to cardiac rupture after acute MI. Male C57BL/6J mice were subjected to MI (induced by ligating the left anterior descending coronary artery) and killed 1, 2, 4, 7 or 14 days after MI. MMP-2 and MMP-9 activity in the heart were measured by zymography. Collagen content was measured by hydroxyproline assay. We found that after MI, MMP-9 activity increased as early as 1 day and reached a maximum by 2-4 days, associated with a similar increase in neutrophil and macrophage infiltration in the infarct area. MMP-2 started to increase rapidly within 4 days, reaching a maximum by 7 days and remaining high even at 14 days. Intense macrophage infiltration appeared by 4 days after MI and then gradually decreased within 7 to 14 days. Collagen content was unchanged until 4 days after MI, at which point it increased and remained high thereafter. Our data suggest that in mice, overexpression of MMP-2 and MMP-9 (possibly expressed mainly by neutrophils and macrophages) may lead to excessive ECM degradation in the early phase of MI, impairing infarct healing and aggravating early remodeling which in turn causes cardiac rupture.  相似文献   

4.
Myocardial infarction (MI), leads to cardiac remodeling, thinning of the ventricle wall, ventricular dilation, and heart failure, and is a leading cause of death. Interactions between the contractile elements of the cardiac myocytes and the extracellular matrix (ECM) help maintain myocyte alignment required for the structural and functional integrity of the heart. Following MI, reorganization of the ECM and the myocytes occurs, contributing to loss of heart function. In certain pathological circumstances, the ECM is modulated such that the structure of the tissue becomes damaged. The matrix metalloproteinases (MMPs) are a family of enzymes that degrade molecules of the ECM. The present experiments were performed to define the time-course, isozyme subtypes, and cellular source of increased MMP expression that occurs following MI in an experimental rabbit model. Heart tissue samples from infarcted and sham animals were analyzed over a time-course of 1-14 days. By zymography, it was demonstrated that, unlike the sham controls, MMP-9 expression was induced within 24 hours following MI. MMP-3 expression, also absent in sham controls, was induced 2 days after MI. MMP-2 expression was detected in both the sham and infarcted samples and was modestly up-regulated following MI. Tissue inhibitor of metalloproteinase-1 (TIMP-1) expression was evaluated and shown to be down-regulated following MI, inverse of MMP-9 and MMP-3 expression. Further, MMP-9 and MMP-3 expression was detected by immunohistochemistry in myocytes within the infarct. Additional studies were conducted in which cultured rat cardiac myocytes were exposed to a hypoxic environment (2% O2) for 24 hours and the media analyzed for MMP expression. MMP-9 and MMP-3 were induced following exposure to hypoxia. It is speculated that the net increase in proteolytic activity by myocytes is a contributing factor leading to myocyte misalignment and slippage. Additional studies with a MMP inhibitor would elucidate this hypothesis.  相似文献   

5.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   

6.

Background

We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI.

Methods and Results

In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group.

Conclusion

The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI.  相似文献   

7.
目的:筛选大鼠急性心梗后的心室重构过程中差异表达的微小RNA(microRNA, miRNA),为miRNA 调控心室重构的机制 研究提供靶标。方法:20 只成年雄性Wistar 大鼠,分组如下:心肌梗死组(MI组,n=10)和假手术组(Sham 组,n=10)。通过结扎大鼠 左冠状动脉前降支构建急性心梗模型建模。4 周后对大鼠进行超声心动图检查和梗死边缘区心肌HE 染色观察心室重构程度。利 用miRNA芯片对心梗边缘区的miRNA进行差异表达检测,采用实时定量PCR验证芯片结果的可靠性。结果:心脏超声显示MI 组大鼠左室重构明显,心梗边缘区心肌HE染色可见细胞间质大量胶原纤维沉积。miRNA 芯片结果显示15 个miRNA在心梗4 周后呈差异表达,其中11 个miRNA(miR-21、miR-23a、miR-125b、miR-132、miR-146b、miR-181b、miR-199a、miR-320、miR-324、 miR-328 和miR-499)表达上调,4 个miRNA(miR-29、miR-30c、miR-133a 和miR-208)表达下调。实时定量PCR 验证结果与芯片结 果一致。结论:这些差异表达的miRNA 可能与心梗后心室重构相关,进一步深入研究特定miRNA 的调控机制有望为基因治疗提 供新靶点。  相似文献   

8.
Chronic elevation of circulating ANG II is associated with cardiac remodeling in patients with hypertension and heart failure. The underlying mechanisms, however, are not completely defined. Herein, we studied ANG II-induced molecular and cellular events in the rat heart as well as their links to the redox state. We also addressed the potential contribution of aldosterone (ALDO) on ANG II-induced cardiac remodeling. In ANG II-treated rats, and compared with controls, we found: 1) the expression of proinflammatory/profibrogenic mediators was significantly increased in the perivascular space and at the sites of microscopic injury in both ventricles; 2) macrophages and myofibroblasts were primary repairing cells at these sites, together with increased fibrillar collagen volume; 3) apoptotic macrophages and myofibroblasts were evident at the same sites; 4) NADPH oxidase (gp91phox) was significantly enhanced at these regions and primarily expressed by macrophages, whereas superoxide dismutase and catalase levels remained unchanged; 5) plasma 8-isoprostane levels were significantly increased; and 6) blood pressure was significantly elevated. Losartan treatment completely prevented cardiac oxidative stress as well as molecular/cellular responses and normalized blood pressure. Spironolactone treatment partially suppressed the cardiac inflammatory/fibrogenic responses and redox state. Thus chronic elevation of circulating ANG II is accompanied by a proinflammatory/profibrogenic phenotype involving vascular and myocardial remodeling in both ventricles. Enhanced reactive oxygen species production at these sites and increased plasma 8-isoprostane indicate the involvement of oxidative stress in ANG II-induced cardiac injury. ALDO contributes, in part, to ANG II-induced cardiac molecular and cellular responses.  相似文献   

9.
ANG II has a clear role in development of cardiac hypertrophy, fibrosis, and dysfunction. It has been difficult, however, to determine whether these actions are direct or consequences of its systemic hemodynamic effects in vivo. To overcome this limitation, we used transgenic mice with cardiac-specific expression of a transgene fusion protein that releases ANG II from cardiomyocytes (Tg-ANG II-cardiac) without involvement of the systemic renin-angiotensin system and tested whether increased cardiac ANG II accelerates remodeling and dysfunction postmyocardial infarction (MI), whereas those mice show no evidence of cardiac hypertrophy under the basal condition. Male 12- to 14-wk-old Tg-ANG II-cardiac mice and their wild-type littermates (WT) were subjected to sham-MI or MI by ligating the left anterior descending coronary artery for 8 wk. Cardiac ANG II levels were approximately 10-fold higher in Tg-ANG II-cardiac mice than their WT, whereas ANG II levels in plasma and other tissues did not differ between strains. Systolic blood pressure and heart rate were similar between groups with or without MI. In sham-MI, Tg-ANG II-cardiac mice had increased collagen deposition and decreased capillary density. The differences between strains became more pronounced after MI. Although cardiac function was well preserved in the Tg-ANG II-cardiac mice with sham-MI, cardiac remodeling and dysfunction post-MI were more severe than WT. Our results demonstrate that, independent of systemic hemodynamic effects, cardiac ANG II may act locally in the heart, causing interstitial fibrosis in sham-MI and accelerating deterioration of cardiac dysfunction and remodeling post-MI.  相似文献   

10.
11.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

12.
目的:筛选大鼠急性心梗后的心室重构过程中差异表达的微小RNA(microRNA,miRNA),为miRNA调控心室重构的机制研究提供靶标。方法:20只成年雄性Wistar大鼠,分组如下:心肌梗死组(MI组,n=10)和假手术组(Sham组,n=10)。通过结扎大鼠左冠状动脉前降支构建急性心梗模型建模。4周后对大鼠进行超声心动图检查和梗死边缘区心肌HE染色观察心室重构程度。利用miRNA芯片对心梗边缘区的miRNA进行差异表达检测,采用实时定量PCR验证芯片结果的可靠性。结果:心脏超声显示MI组大鼠左室重构明显,心梗边缘区心肌HE染色可见细胞间质大量胶原纤维沉积。miRNA芯片结果显示15个miRNA在心梗4周后呈差异表达,其中11个miRNA(miR-21、miR-23a、miR-125b、miR-132、miR-146b、miR-181b、miR-199a、miR-320、miR-324、miR-328和miR-499)表达上调,4个miRNA(miR-29、miR-30c、miR-133a和miR-208)表达下调。实时定量PCR验证结果与芯片结果一致。结论:这些差异表达的miRNA可能与心梗后心室重构相关,进一步深入研究特定miRNA的调控机制有望为基因治疗提供新靶点。  相似文献   

13.
Dermatopontin (DPT), an extracellular matrix (ECM) protein, has been previously shown to be upregulated in the infarct zone of experimentally induced myocardial infarction (MI) rats. However, the accurate role that DPT exerts in the ventricular remodeling process after MI remains poorly understood. In this study, we evaluated the expression pattern of DPT mRNA and protein as well as its secretion in cultured neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) under conditions of hypoxia and serum deprivation (hypoxia/SD). Further, we tested the possible roles of DPT in CFs adhesion, spreading, migration and proliferation, which greatly promote the ventricular remodeling process after MI. Results showed that hypoxia/SD stimulated DPT expression and secretion in CMs and CFs and that DPT promoted adhesion, spreading and migration of CFs whereas had no effect on CFs proliferation. In addition, functional blocking antibodies specific for integrin α3 and β1 significantly reduced CFs adhesion and migration that DPT induced, suggesting that integrin α3β1 is at least one receptor for CFs adhesion and migration to DPT. These results implicated that DPT participates in the ventricular remodeling process after MI and may act as a potential therapeutic target for ventricular remodeling.  相似文献   

14.
Inward eutrophic remodeling is the most prevalent structural change of resistance arteries in hypertension. Sympathetic and angiotensin (ANG)-induced vasoconstriction has been associated with hypertension and with the production of matrix metalloproteinases (MMPs) and ROS. Therefore, we hypothesize that prolonged exposure to norepinephrine (NE) and ANG II induces arteriolar inward remodeling dependent on the activation of MMPs and the production of ROS. This hypothesis was tested on rat cremaster arterioles that were isolated, cannulated, pressurized, and exposed to either NE (10(-5.5) mol/l) + ANG II (10(-7) mol/l) or vehicle (control) for 4 h. The prolonged exposure to NE + ANG II induced inward remodeling, as evidenced by the reduced maximal arteriolar passive diameter observed after versus before exposure to the vasoconstrictor agonists. NE + ANG II also increased the arteriolar expression and activity of MMP-2 and the production of ROS as determined, respectively, by real-time RT-PCR, gel and in situ zymography, and the use of ROS-sensitive dyes with multiphoton microscopy. Inhibition of MMP activation (with GM-6001) or ROS production (with apocynin or tempol) prevented the NE + ANG II-induced inward remodeling. Inhibition of ROS production prevented the activation of MMPs and the remodeling process, whereas inhibition of MMP activation did not affect ROS production. These results indicate that prolonged stimulation of resistance arterioles with NE + ANG II induces a ROS-dependent activation of MMPs necessary for the development of arteriolar inward remodeling. These mechanisms may contribute to the structural narrowing of resistance vessels in hypertension.  相似文献   

15.
In addition to well-documented vascular growth-promoting effects, ANG II exerts proapoptotic effects that are poorly understood. IGF-1 is a potent survival factor for human vascular smooth muscle cells (hVSMC), and its antiapoptotic effects are mediated via the IGF-1 receptor (IGF-1R) through a signaling pathway involving phosphatidylinositol 3-kinase and Akt. We hypothesized that there would be cross talk between ANG II proapoptotic effects and IGF-1 survival effects in hVSMC. To investigate ANG II-induced apoptosis and the potential involvement of IGF-1, we exposed quiescent and nonquiescent hVSMC to ANG II. ANG II induced apoptosis only in nonquiescent cells but stimulated hypertrophy in quiescent cells. ANG II-induced apoptosis was characterized by marked inhibition of Akt phosphorylation and stimulation of membrane Fas ligand (FasL) expression, caspase-8 activation, and a reduction in soluble FasL expression. Adenovirally mediated overexpression of Akt rescued hVSMC from ANG II-induced apoptosis. IGF-1R activation increased Akt phosphorylation and soluble FasL expression, and these effects were completely blocked by coincubating hVSMC with ANG II. In conclusion, ANG II-induced apoptosis of hVSMC is characterized by marked inhibition of Akt phosphorylation and stimulation of an extrinsic cell death signaling pathway via upregulation of membrane FasL expression, caspase-8 activation, and a reduction in soluble FasL expression. Furthermore, ANG II antagonizes the antiapoptotic effect of IGF-1 by blocking its ability to increase Akt phosphorylation and soluble FasL. These findings provide novel insights into ANG II-induced apoptotic signaling and have significant implication for understanding ANG II-induced remodeling in hypertension and atherosclerosis.  相似文献   

16.
Left ventricular (LV) remodeling, which includes ventricular dilatation and increased interstitial fibrosis after myocardial infarction (MI), is the critical process underlying the progression to heart failure. Therefore, a novel approach for preventing LV remodeling after MI is highly desirable. Yuzu is a citrus plant originating in East Asia, and has a number of cardioprotective properties such as hesperidin. However, no study has proved whether yuzu can prevent LV remodeling. The aim of this study was to determine the effects of yuzu on heart failure (HF) and its potential impact on the LV remodeling process after MI. Our in vivo study using the permanent left anterior descending coronary artery (LAD) occlusion model demonstrate that one week pre-treatment with yuzu or its major metabolite hesperidin before LAD occlusion significantly attenuated cardiac dysfunction, myocyte apoptosis and inflammation. Not only yuzu but also hesperidin inhibited caspase-3 activity, myeloperoxidase expression, α-smooth muscle actin expression, and matrix metalloproteinase-2 activity in a permanent LAD occlusion rat model. To our knowledge, our findings provide the first evidence that yuzu and hesperidin prevent MI-induced ventricular dysfunction and structural remodeling of myocardium.  相似文献   

17.
We examined whether adrenomedullin, a vasoactive peptide expressed in the heart, modulates the increase in blood pressure, changes in systolic and diastolic function, and left ventricular hypertrophy produced by long-term administration of ANG II or norepinephrine in rats. Subcutaneous administration of adrenomedullin (1.5 microg.kg(-1).h(-1)) for 1 wk inhibited the ANG II-induced (33.3 microg.kg(-1).h(-1) sc) increase in mean arterial pressure by 67% (P < 0.001) but had no effect of norepinephrine-induced (300 microg.kg(-1).h(-1) sc) hypertension. Adrenomedullin enhanced the ANG II-induced improvement in systolic function, resulting in a further 9% increase (P < 0.01) in the left ventricular ejection fraction and 19% increase (P < 0.05) in the left ventricular fractional shortening measured by echocardiography, meanwhile norepinephrine-induced changes in systolic function were remained unaffected. Adrenomedullin had no effect on ANG II- or norepinephrine-induced left ventricular hypertrophy or expression of hypertrophy-associated genes, including contractile protein and natriuretic peptide genes. The present study shows that adrenomedullin selectively suppressed the increase in blood pressure and augmented the improvement of systolic function induced by ANG II. Because adrenomedullin had no effects on ANG II- and norepinephrine-induced left ventricular hypertrophy, circulating adrenomedullin appears to act mainly as a regulator of vascular tone and cardiac function.  相似文献   

18.
Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively (P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes (P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号