首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we identified snapin as an interaction partner of the CK1 isoform delta (CK1delta) in the yeast two-hybrid system and localized the interacting domains of both proteins. The interaction of CK1delta with snapin was confirmed by co-immunoprecipitation. Snapin was phosphorylated by CK1delta in vitro. Both proteins localized in close proximity in the perinuclear region, wherein snapin was found to associate with membranes of the Golgi apparatus. The identification of snapin as a new substrate of CK1delta points towards a possible function for CK1delta in modulating snapin specific functions.  相似文献   

2.
Nectin adhesion molecules are involved in the early steps of cell junction formation. Later during the polarisation process, Nectins are components of epithelial adherens junctions where they are indirectly associated with the E-cadherin/Catenins complex via the adaptator AF-6. To have a better understanding of Nectin-based cell junctions, we looked for some new Nectins' partners. We demonstrate that the scaffold molecule PICK-1, involved in the clustering of junctional receptors in synaptic junctions, interacts directly with Nectins in a PSD-95/Dlg/ZO-1 domain-dependent manner and is localised at adherens junctions in epithelial cells. Finally, we observed that protein interacting with C-kinase-1 (PICK-1) also interacts directly with the junctional adhesion molecules, and we suggest that PICK-1 could be involved in the regulation of both adherens and tight junctions in epithelial cells.  相似文献   

3.
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell–matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells.  相似文献   

4.
5.
RBBP6 (retinoblastoma binding protein 6) is a 250-kDa multifunctional protein that interacts with both p53 and pRb and has been implicated in mRNA processing. It has also been identified as a putative E3 ubiquitin ligase due to the presence of a RING finger domain, although no substrate has been identified up to now. Using the RING finger domain as bait in a yeast two-hybrid screen, we identified YB-1 (Y-box binding protein 1) as a binding partner of RBBP6, localising the interaction to the last 62 residues of YB-1. We showed, furthermore, that both full-length RBBP6 and the isolated RING finger domain were able to ubiquitinate YB-1, resulting in its degradation in the proteosome. As a result, RBBP6 was able to suppress the levels of YB-1 in vivo and to reduce its transactivational ability. In the light of the important role that YB-1 appears to play in tumourigenesis, our results suggest that RBBP6 may be a relevant target for therapeutic drugs aimed at modifying the activity of YB-1.  相似文献   

6.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1−/− colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.  相似文献   

7.
The ARFP/F protein is synthesized from the +1 reading frame of the hepatitis C virus (HCV) core protein gene. The function of this protein remains unknown. To study the function of the HCV ARFP/F protein, we have conducted the yeast two-hybrid screening experiment to identify cellular proteins that may interact with the ARFP/F protein. MM-1, a c-Myc interacting protein, was found to interact with HCV ARFP/F protein in this experiment. The physical interaction between ARFP/F and MM-1 proteins was further confirmed by the GST pull-down assay, the co-immunoprecipitation assay and confocal microscopy. As MM-1 can inhibit the gene transactivation activity of c-Myc, we have conducted further analysis to examine the possible effect of the ARFP/F protein on c-Myc. Our results indicate that the HCV ARFP/F protein can enhance the gene trans-activation activity of c-Myc, apparently by antagonizing the inhibitory effect of MM-1. The ability of the ARFP/F protein to enhance the activity of c-Myc raises the possibility that ARFP/F protein might play a role in hepatocellular transformation in HCV patients. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Schreiner D  Müller K  Hofer HW 《FEBS letters》2006,580(22):5295-5300
The cadherin superfamily protein Fat1 is known to interact with the EVH1 domain of mammalian Ena/VASP. Here we demonstrate that: (i) the scaffolding proteins Homer-3 and Homer-1 also interact with the EVH1 binding site of hFat1 in vitro, and (ii) binding of Homer-3 and Mena to hFat1 is mutually competitive. Endogenous Fat1 binds to immobilised Homer-3 and endogenous Homer-3 binds to immobilised Fat1. Both, endogenous and over-expressed Fat1 exhibit co-localisation with Homer-3 in cellular protrusions and at the plasma membrane of HeLa cells. As Homer proteins and Fat1 have been both linked to psychic disorders, their interaction may be of patho-physiological importance.  相似文献   

9.
Recent evidence indicates that the glycine transporter-1 (GLYT1) plays a role in regulation of NMDA receptor function through tight control of glycine concentration in its surrounding medium. Immunohistochemical studies have demonstrated that, as well as being found in glial cells, GLYT1 is also associated with the pre- and postsynaptic aspects of glutamatergic synapses. In this article, we describe the interaction between GLYT1 and PSD-95 in the rat brain, PSD-95 being a scaffolding protein that participates in the organization of glutamatergic synapses. Mutational analysis reveals that the C-terminal sequence of GLYT1 (-SRI) is necessary for the transporter to interact with the PDZ domains I and II of PSD-95. This C-terminal tripeptide motif also seems to be involved in the trafficking of GLYT1 to the membrane, although this process does not involve PDZ proteins. GLYT1 is able to recruit PSD-95 to the plasma membrane, but it does not affect its clustering. However, the interaction stabilizes this transporter at the plasma membrane, blocking its internalization and producing a significant increase in the V(max) of glycine uptake. We hypothesize that PSD-95 might act as a scaffold for GLYT1 and NMDA receptors, allowing GLYT1 to regulate the concentrations of glycine in the micro-environment of NMDA receptors.  相似文献   

10.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

11.
Living cells rival computers in their ability to process external information and make complex behavioral decisions. Many of these decisions are made by networks of interacting signaling proteins. Ongoing structural, biochemical and cell-based studies have begun to reveal several common principles by which protein components are used to specifically transmit and process information. Recent engineering studies demonstrate that these relatively simple principles can be used to rewire signaling behavior in a process that mimics the evolution of new phenotypic responses.  相似文献   

12.
The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu(+)/−/CDCP1+ breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell–substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu+, but not HER-2/neu(+)/− cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.  相似文献   

13.
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains—RING (really interesting new gene), Bbox1, and Bbox2—that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.  相似文献   

14.
Glycogen, a branched polymer of glucose, acts as an intracellular carbon and energy reserve in many tissues and cell types. An important pathway for its degradation is by transport to lysosomes in an autophagy-like process. It has been proposed that starch-binding domain-containing protein 1 (Stbd1) may participate in this mechanism by anchoring glycogen to intracellular membranes. In addition, Stbd1 has been reported to interact with a known autophagy protein, GABARAPL1, a member of the Atg8 family. Here, we confirm this interaction and identify an Atg8 interacting motif (AIM) in Stbd1 necessary for GABARAPL1 binding as judged by co-immunoprecipitation from cell extracts and co-localization in cells as evidenced by immunofluorescence microscopy. The AIM sequence of Stbd1 200HEEWEMV206 lies within a predicted disordered region of the molecule and fits the consensus of other AIM sequences in cargo-specifying proteins such as p62 and Nix. Mutation of the AIM, including single point mutations of either W203 or V206, eliminated the co-localization of Stbd1 with both over-expressed and endogenous GABARAPL1. Stbd1 may therefore function as a novel cargo binding protein that delivers glycogen to lysosomes in an autophagic pathway that could be termed “glycophagy”.  相似文献   

15.
16.
17.
The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.  相似文献   

18.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

19.
Cullin-RING ubiquitin ligases (CRLs), which comprise the largest class of E3 ligases, regulate diverse cellular processes by targeting numerous proteins. Conjugation of the ubiquitin-like protein Nedd8 with Cullin activates CRLs. Cullin-associated and neddylation-dissociated 1 (Cand1) is known to negatively regulate CRL activity by sequestering unneddylated Cullin1 (Cul1) in biochemical studies. However, genetic studies of Arabidopsis have shown that Cand1 is required for optimal CRL activity. To elucidate the regulation of CRLs by Cand1, we analyzed a Cand1 mutant in Drosophila. Loss of Cand1 causes accumulation of neddylated Cullin3 (Cul3) and stabilizes the Cul3 adaptor protein HIB. In addition, the Cand1 mutation stimulates protein degradation of Cubitus interruptus (Ci), suggesting that Cul3-RING ligase activity is enhanced by the loss of Cand1. However, the loss of Cand1 fails to repress the accumulation of Ci in Nedd8AN015 or CSN5null mutant clones. Although Cand1 is able to bind both Cul1 and Cul3, mutation of Cand1 suppresses only the accumulation of Cul3 induced by the dAPP-BP1 mutation defective in the neddylation pathway, and this effect is attenuated by inhibition of proteasome function. Furthermore, overexpression of Cand1 stabilizes the Cul3 protein when the neddylation pathway is partially suppressed. These data indicate that Cand1 stabilizes unneddylated Cul3 by preventing proteasomal degradation. Here, we propose that binding of Cand1 to unneddylated Cul3 causes a shift in the equilibrium away from the neddylation of Cul3 that is required for the degradation of substrate by CRLs, and protects unneddylated Cul3 from proteasomal degradation. Cand1 regulates Cul3-mediated E3 ligase activity not only by acting on the neddylation of Cul3, but also by controlling the stability of the adaptor protein and unneddylated Cul3.  相似文献   

20.
The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CAN) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CAN and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N′-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号