首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract : Desensitization of many G protein-coupled receptors after ligand binding generally involves phosphorylation of the receptors and internalization of the ligandbound, phosphorylated receptors by a clathrin-mediated endocytic pathway. Olfactory receptor neurons from the channel catfish ( Ictalurus punctatus ) express the G protein-coupled odorant receptors and metabotropic glutamate receptors. To determine whether a clathrin-dependent receptor internalization pathway exists in olfactory receptor neurons, western blotting and immunocytochemistry were used to identify and localize clathrin and dynamin in isolated olfactory neurons. Clathrin and dynamin immunoreactivity was found in the cell bodies, dendrites, and dendritic knobs of the neurons. Using the activity-dependent fluorescent dye FM1-43 to monitor receptor internalization, we show that single olfactory neurons stimulated with the odorant amino acid l -glumate internalized the dye. Odorant-stimulated neurons showed a consistent pattern of internalized FM1-43 fluorescence localized in the cell bodies and dendritic knobs. Odorant-stimulated internalization was unaffected by the caveolae activator okadaic acid and was significantly decreased by a metabotropic glutamate receptor antagonist, suggesting that a functional, clathrindependent, receptor-mediated internalization pathway exists in olfactory receptor neurons.  相似文献   

2.
The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization.  相似文献   

3.
Agonist-induced phosphorylation of beta-adrenergic receptors (beta ARs) by G protein-coupled receptor kinases (GRKs) results in their desensitization followed by internalization. Whether protein kinase A (PKA)-mediated phosphorylation of beta ARs, particularly the beta 1AR subtype, can also trigger internalization is currently not known. To test this, we cloned the mouse wild type beta 1AR (WT beta 1AR) and created 3 mutants lacking, respectively: the putative PKA phosphorylation sites (PKA-beta 1AR), the putative GRK phosphorylation sites (GRK-beta 1AR), and both sets of phosphorylation sites (PKA-/GRK-beta 1AR). Following agonist stimulation, both PKA-beta 1AR and GRK-beta 1AR mutants showed comparable increases in phosphorylation and desensitization. Saturating concentrations of agonist induced only 50% internalization of either mutant compared with wild type, suggesting that both PKA and GRK phosphorylation of the receptor contributed to receptor sequestration in an additive manner. Moreover, in contrast to the WT beta 1AR and PKA-beta 1AR, sequestration of the GRK-beta 1AR and PKA-/GRK-beta 1AR was independent of beta-arrestin recruitment. Importantly, clathrin inhibitors abolished agonist-dependent internalization for both the WT beta 1AR and PKA-beta 1AR, whereas caveolae inhibitors prevented internalization only of the GRK-beta 1AR mutant. Taken together, these data demonstrate that: 1) PKA-mediated phosphorylation can trigger agonist-induced internalization of the beta 1AR and 2) the pathway selected for beta 1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA-mediated phosphorylation directs internalization via a caveolae pathway, whereas GRK-mediated phosphorylation directs it through clathrin-coated pits.  相似文献   

4.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

5.
Transferrin receptor mediates internalization of transferrin with bound ferric ions through the clathrin-dependent pathway. We found that binding of transferrin to the receptor induced rapid generation of cell surface ceramide which correlated with activation of acid, but not neutral, sphingomyelinase. At the onset of transferrin internalization both ceramide level and acid sphingomyelinase activity returned to their basic levels. Down-regulation of acid sphingomyelinase in cells with imipramine or silencing of the enzyme expression with siRNA stimulated transferrin internalization and inhibited its recycling. In these conditions colocalization of transferrin with clathrin was markedly reduced. Simultaneously, K+ depletion of cells which interfered with the assembly of clathrin-coated pits inhibited the uptake of transferrin much less efficiently than it did in control conditions. The down-regulation of acid sphingomyelinase activity led to the translocation of transferrin receptor to the raft fraction of the plasma membrane upon transferrin binding. The data suggest that lack of cell surface ceramide, generated in physiological conditions by acid sphingomyelinase during transferrin binding, enables internalization of transferrin/transferrin receptor complex by clathrin-independent pathway.  相似文献   

6.
Upon agonist stimulation, many G protein-coupled receptors such as beta(2)-adrenergic receptors are internalized via beta-arrestin- and clathrin-dependent mechanisms, whereas others, like M(2) muscarinic acetylcholine receptors (mAChRs), are internalized by clathrin- and arrestin-independent mechanisms. To gain further insight into the mechanisms that regulate M(2) mAChR endocytosis, we investigated the post-endocytic trafficking of M(2) mAChRs in HeLa cells and the role of the ADP-ribosylation factor 6 (Arf6) GTPase in regulating M(2) mAChR internalization. Here, we report that M(2) mAChRs are rapidly internalized by a clathrin-independent pathway that is inhibited up to 50% by expression of either GTPase-defective Arf6 Q67L or an upstream Arf6 activator, Galpha(q) Q209L. In contrast, M(2) mAChR internalization was not affected by expression of dominant-negative dynamin 2 K44A, which is a known inhibitor of clathrin-dependent endocytosis. Nevertheless, M(2) mAChRs, which are initially internalized in structures that lack clathrin-dependent endosomal markers, quickly localize to endosomes that contain the clathrin-dependent, early endosomal markers early endosome autoantigen-1, transferrin receptor, and GTPase-defective Rab5 Q79L, which is known to swell early endosomal compartments. These results suggest that M(2) mAChRs initially internalize via an Arf6-associated, clathrin-independent pathway but then quickly merge with the clathrin endocytic pathway at the level of early endosomes.  相似文献   

7.
We studied the endocytosis of fluorescent glycosphingolipid (GSL) analogs in various cell types using pathway-specific inhibitors and colocalization studies with endocytic markers and DsRed caveolin-1 (cav-1). Based on inhibitor studies, all GSLs tested were internalized predominantly (>80%) by a clathrin-independent, caveolar-related mechanism, regardless of cell type. In addition, fluorescent lactosylceramide (LacCer) colocalized with DsRed-cav-1 in vesicular structures upon endocytosis in rat fibroblasts. The internalization mechanism for GSLs was unaffected by varying the carbohydrate headgroup or sphingosine backbone chain length; however, a fluorescent phosphatidylcholine analog was not internalized via caveolae, suggesting that the GSL ceramide core may be important for caveolar uptake. Internalization of fluorescent LacCer was reduced 80-90% in cell types with low cav-1, but was dramatically stimulated by cav-1 overexpression. However, even in cells with low levels of cav-1, residual LacCer internalization was clathrin independent. In contrast, cholera toxin B subunit (CtxB), which binds endogenous GM1, was internalized via clathrin-independent endocytosis in cells with high cav-1 expression, whereas significant clathrin-dependent uptake occurred in cells with low cav-1. Fluorescent GM1, normally internalized by clathrin-independent endocytosis in HeLa cells with low cav-1, was induced to partially internalize via the clathrin pathway in the presence of CtxB. These results suggest that GSL analogs are selectively internalized via a caveolar-related mechanism in most cell types, whereas CtxB may undergo "pathway switching" when cav-1 levels are low.  相似文献   

8.
Endocytosis is an essential process by which eukaryotic cells internalize exogenous material or regulate signaling at the cell surface [1]. Different endocytic pathways are well established in yeast and animals; prominent among them is clathrin-dependent endocytosis [2, 3]. In plants, endocytosis is poorly defined, and no molecular mechanism for cargo internalization has been demonstrated so far [4, 5], although the internalization of receptor-ligand complexes at the plant plasma membrane has recently been shown [6]. Here we demonstrate by means of a green-to-red photoconvertible fluorescent reporter, EosFP [7], the constitutive endocytosis of PIN auxin efflux carriers [8] and their recycling to the plasma membrane. Using a plant clathrin-specific antibody, we show the presence of clathrin at different stages of coated-vesicle formation at the plasma membrane in Arabidopsis. Genetic interference with clathrin function inhibits PIN internalization and endocytosis in general. Furthermore, pharmacological interference with cargo recruitment into the clathrin pathway blocks internalization of PINs and other plasma-membrane proteins. Our data demonstrate that clathrin-dependent endocytosis is operational in plants and constitutes the predominant pathway for the internalization of numerous plasma-membrane-resident proteins including PIN auxin efflux carriers.  相似文献   

9.
Endocytosis is critical for many cellular functions. We show that endocytosis of the common gammac cytokine receptor is clathrin independent by using a dominant-negative mutant of Eps15 or RNA interference to knock down clathrin heavy chain. This pathway is synaptojanin independent and requires the GTPase dynamin. In addition, this process requires actin polymerization. To further characterize the function of dynamin in clathrin-independent endocytosis, in particular its connection with the actin cytoskeleton, we focused on dynamin-binding proteins that interact with F-actin. We compared the involvement of these proteins in the clathrin-dependent and -independent pathways. Thus, we observed that intersectin, syndapin, and mAbp1, which are necessary for the uptake of transferrin (Tf), a marker of the clathrin route, are not required for gammac receptor endocytosis. Strikingly, cortactin is needed for both gammac and Tf internalizations. These results reveal the ubiquitous action of cortactin in internalization processes and suggest its role as a linker between actin dynamics and clathrin-dependent and -independent endocytosis.  相似文献   

10.
Apelin is a novel neuropeptide involved in the regulation of body fluid homeostasis and cardiovascular functions. It acts through a G protein-coupled receptor, the APJ receptor. We studied the structure-activity relationships of apelin at the rat apelin receptor, tagged at its C-terminal end with enhanced green fluorescent protein and stably expressed in CHO cells. We evaluated the potency of N- and C-terminal deleted fragments of K17F to bind with high affinity to the apelin receptor, and to inhibit cAMP production and to induce apelin receptor internalization. We first characterized the internalization and trafficking of the rat apelin receptor. This receptor was internalized via a clathrin-dependent mechanism and our results suggest that receptor trafficking may follow a recycling pathway. We then tried to identify the amino acids of K17F required for apelin activity. The first five N-terminal and the last two C-terminal amino acids of K17F were not essential for apelin binding or the inhibition of cAMP production. However, the full-length sequence of K17F was the most potent inducer of apelin receptor internalization because successive N-terminal amino-acid deletions progressively reduced internalization and the removal of a single amino acid at the C-terminus abolished this process. Finally, the most novel observation of this work is that hypotensive actions of apelin peptides correlate best with the ability of those ligands to internalize. Thus, apelin receptor signaling and endocytosis are functionally dissociated, possibly reflecting the existence of several conformational states of this receptor, stabilized by the binding of different apelin fragments to the apelin receptor.  相似文献   

11.
Dopamine D1 receptor interactions with arrestins have been characterized using heterologously expressed D1 receptor and arrestins. The purpose of this study was to investigate the interaction of the endogenous D1 receptor with endogenous arrestin2 and 3 in neostriatal neurons. Endogenous arrestin2 and 3 in striatal homogenates bound to the C-terminus of the D1 receptor in a glutathione-S-transferase (GST) pulldown assay, with arrestin3 binding more strongly. The D1 C-terminus and, to a lesser extent, the third cytoplasmic loop also bound purified arrestin2 and 3. In neostriatal neurons, 2, 5, and 20 min agonist treatment increased the colocalization of the D1 receptor and arrestin3 immunoreactivity without altering the colocalization of the D1 receptor and arrestin2. Further, agonist treatment for 5 and 20 min caused translocation of arrestin3, but not arrestin2, to the membrane. The binding of arrestin3, but not arrestin2, to the D1 receptor was increased as assessed by coimmunoprecipitation after agonist treatment for 5 and 20 min. Agonist treatment of neurons induced D1 receptor internalization (35-45%) that was maximal within 2-5 min, a time-course similar to that of the increase in colocalization of the D1 receptor with arrestin3. These data indicate that the D1 receptor preferentially interacts with arrestin3 in neostriatal neurons.  相似文献   

12.
In this work, we have imaged the lateral diffusion of activated epidermal growth factor receptor (EGFR) on cell membrane for studying its internalization pathway. After EGF activation, the mobility of individual EGFR molecules was measured and compared with that in the cells disrupted of clathrin-coated pits and caveolae, the two endocytosis-competent membrane microdomains. The results implicated that activated EGFR molecules associated with clathrin-coated pits but not caveolae at low doses of EGF, whereas they were located in these two domains at high EGF doses. It provided supporting evidence for the occurrence of both clathrin-dependent and caveolae-dependent EGFR endocytosis.  相似文献   

13.
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.  相似文献   

14.
Huang H  Deng X  He X  Yang W  Li G  Shi Y  Shi L  Mei L  Gao J  Zhou N 《Cellular signalling》2011,23(9):1455-1465
Neuropeptides of the adipokinetic hormone (AKH) family play important roles in insect hemolymph sugar homeostasis, larval lipolysis and storage-fat mobilization. Our previous studies have shown that the adipokinetic hormone receptor (AKHR), a Gs-coupled receptor, induces intracellular cAMP accumulation, calcium mobilization and ERK1/2 phosphorylation upon agonist stimulation. However, the underlying molecular mechanisms that regulate the internalization and desensitization of AKHR remain largely unknown. In the current study we made a construct to express AKHR fused with enhanced green fluorescent protein (EGFP) at its C-terminal end to further characterize AKHR internalization. In stable AKHR-EGFP-expressing HEK-293 cells, AKHR-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner via the clathrin-coated pit pathway upon agonist stimulation, and internalized receptors were slowly recovered to the cell surface after the removal of AKH peptides. The results derived from RNA interference and arrestin translocation demonstrated that G protein-coupled receptor kinase 2 and 5 (GRK2/5) and β-arrestin2 were involved in receptor phosphorylation and internalization. Furthermore, experiments using deletion and site-directed mutagenesis strategies identified the three residues (Thr356, Ser359 and Thr362) responsible for GRK-mediated phosphorylation and internalization and the C-terminal domain from residue-322 to residue-342 responsible for receptor export from ER. This is the first detailed investigation of the internalization and trafficking of insect G protein-coupled receptors.  相似文献   

15.
Candida albicans is a major cause of oropharyngeal, vulvovaginal and haematogenously disseminated candidiasis. Endocytosis of C. albicans hyphae by host cells is a prerequisite for tissue invasion. This internalization involves interactions between the fungal invasin Als3 and host E- or N-cadherin. Als3 shares some structural similarity with InlA, a major invasion protein of the bacterium Listeria monocytogenes . InlA mediates entry of L. monocytogenes into host cells through binding to E-cadherin. A role in internalization, for a non-classical stimulation of the clathrin-dependent endocytosis machinery, was recently highlighted. Based on the similarities between the C. albicans and L. monocytogenes invasion proteins, we studied the role of clathrin in the internalization of C. albicans . Using live-cell imaging and indirect immunofluorescence of epithelial cells infected with C. albicans , we observed that host E-cadherin, clathrin, dynamin and cortactin accumulated at sites of C. albicans internalization. Similarly, in endothelial cells, host N-cadherin, clathrin and cortactin accumulated at sites of fungal endocytosis. Furthermore, clathrin, dynamin or cortactin depletion strongly inhibited C. albicans internalization by epithelial cells. Finally, beads coated with Als3 were internalized in a clathrin-dependent manner. These data indicate that C. albicans , like L. monocytogenes, hijacks the clathrin-dependent endocytic machinery to invade host cells.  相似文献   

16.
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.  相似文献   

17.
The magnitude and duration of G protein-coupled receptor (GPCR) signals are regulated through desensitization mechanisms. In leukocytes, ligand binding to chemokine receptors leads to Ca2+ mobilization and ERK activation through pertussis toxin-sensitive G proteins, as well as to phosphorylation of the GPCR. After interaction with the endocytic machinery (clathrin, adaptin), the adaptor β-arrestin recognizes the phosphorylated GPCR tail and quenches signaling to receptors. The molecular mechanisms that lead to receptor endocytosis are not universal amongst the GPCR, however, and the precise spatial and temporal events in the internalization of the CCR2 chemokine receptor remain unknown. Here we show that after ligand binding, CCR2 internalizes rapidly and reaches early endosomes, and later, lysosomes. Knockdown of clathrin by RNA interference impairs CCR2 internalization, as does treatment with the dynamin inhibitor, dynasore. Our results show that CCR2 internalization uses a combination of clathrin-dependent and -independent pathways, as observed for other chemokine receptors. Moreover, the use of dynasore allowed us to confirm the existence of a dynamin-sensitive element that regulates ERK1/2 activation. Our results indicate additional complexity in the link between receptor internalization and cell signaling.  相似文献   

18.
Microbial pathogens exploit the clathrin endocytic machinery to enter host cells. Vesicular stomatitis virus (VSV), an enveloped virus with bullet-shaped virions that measure 70 x 200 nm, enters cells by clathrin-dependent endocytosis. We showed previously that VSV particles exceed the capacity of typical clathrin-coated vesicles and instead enter through endocytic carriers that acquire a partial clathrin coat and require local actin filament assembly to complete vesicle budding and internalization. To understand why the actin system is required for VSV uptake, we compared the internalization mechanisms of VSV and its shorter (75 nm long) defective interfering particle, DI-T. By imaging the uptake of individual particles into live cells, we found that, as with parental virions, DI-T enters via the clathrin endocytic pathway. Unlike VSV, DI-T internalization occurs through complete clathrin-coated vesicles and does not require actin polymerization. Since VSV and DI-T particles display similar surface densities of the same attachment glycoprotein, we conclude that the physical properties of the particle dictate whether a virus-containing clathrin pit engages the actin system. We suggest that the elongated shape of a VSV particle prevents full enclosure by the clathrin coat and that stalling of coat assembly triggers recruitment of the actin machinery to finish the internalization process. Since some enveloped viruses have pleomorphic particle shapes and sizes, our work suggests that they may use altered modes of endocytic uptake. More generally, our findings show the importance of cargo geometry for specifying cellular entry modes, even when the receptor recognition properties of a ligand are maintained.  相似文献   

19.
Caveolae/raft-dependent endocytosis   总被引:27,自引:0,他引:27  
Although caveolae are well-characterized subdomains of glycolipid rafts, their distinctive morphology and association with caveolins has led to their internalization being considered different from that of rafts. In this review, we propose that caveolae and rafts are internalized via a common pathway, caveolae/raft-dependent endocytosis, defined by its clathrin independence, dynamin dependence, and sensitivity to cholesterol depletion. The regulatory role of caveolin-1 and ligand sorting in this complex endocytic pathway are specifically addressed.  相似文献   

20.
The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号