首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pancreatitis occurs when digestive enzymes are activated in the pancreas. Severe pancreatitis has a 10-30% mortality rate. No specific treatments for pancreatitis exist now. Here, we discovered that interleukin-22 (IL-22) may have therapeutic potential in treating acute and chronic pancreatitis. Wild-type and IL-22 knockout mice were equally susceptible to cerulein-induced acute and chronic pancreatitis, whereas liver-specific IL-22 transgenic mice were completely resistant to cerulein-induced elevation of serum digestive enzymes, pancreatic necrosis and apoptosis, and inflammatory cell infiltration. Treatment of wild-type mice with recombinant IL-22 or adenovirus IL-22 markedly attenuated the severity of cerulein-induced acute and chronic pancreatitis. Mechanistically, we show that the protective effect of IL-22 on pancreatitis was mediated via the induction of Bcl-2 and Bcl-X(L), which bind to Beclin-1 and subsequently inhibit autophagosome formation to ameliorate pancreatitis. In conclusion, IL-22 ameliorates cerulein-induced pancreatitis by inhibiting the autophagic pathway. IL-22 could be a promising therapeutic drug to treat pancreatitis.  相似文献   

2.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

3.
目的:从信号转导这一层次探索双歧杆菌预防大肠癌生长的机制.方法:以大肠癌裸鼠移植瘤为动物模型,预先用青春型双歧杆菌注射于裸鼠腹腔,然后以激光共聚焦显微镜检测大肠癌移植瘤组织丝裂素活化的蛋白激酶(MAPK)家系中的ERK1/2、JNK和p38的含量.结果:双歧杆菌预防组大肠癌组织ERK1/2的平均荧光强度明显低于肿瘤对照组(P<0.01),而JNK和p38的平均荧光强度在两组间差异无显著性(P>0.05).结论:青春型双歧杆菌通过抑制ERK1/2的活化来预防大肠癌的生长.  相似文献   

4.
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone‐type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein‐induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF‐κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti‐inflammatory and anti‐fibrotic therapeutic agent for CP.  相似文献   

5.
Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the l-arginine (l-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of l-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each l-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of l-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.  相似文献   

6.
We have investigated the effects of modifying LDL by Cu++ and various hemoglobin preparations on aortic smooth muscle cell proliferation and on the activation of mitogen activated protein kinase. We found that at very low concentrations (10 g/ml), LDL modified by all of the above agonists markedly stimulated cell proliferation (5–10 fold). This was accompanied by a 2–3 fold stimulation in mitogen activated protein kinase (MAPK) activity. We conclude that modification of LDL under situations that are closer to those found in vivo (i.e. hypoxic conditions), may involve the activation of MAPK as a common biochemical mechanism of action. This in turn, contributes to aortic smooth muscle cell proliferation.  相似文献   

7.
Acute pancreatitis is one of the leading causes of gastrointestinal disorder-related hospitalizations, yet its pathogenesis remains to be fully elucidated. Postsynaptic density protein-95 (PSD-95) is closely associated with tissue inflammation and injury. We aimed to investigate the expression of PSD-95 in pancreatic acinar cells, and its function in regulating the inflammatory response and pancreatic pathological damage in acute pancreatitis. A mouse model of edematous acute pancreatitis was induced with caerulein and lipopolysaccharide in C57BL/6 mice. Tat-N-dimer was injected to inhibit the PSD-95 activity separately, or simultaneously with SB203580, inhibitor of p38 MAPK phosphorylation. Rat pancreatic acinar cells AR42J were cultured with 1 μM caerulein to build a cell model of acute pancreatitis. PSD-95-knockdown and negative control cell lines were constructed by lentiviral transfection of AR42J cells. Paraffin-embedded pancreatic tissue samples were processed for routine HE staining to evaluate the pathological changes of human and mouse pancreatic tissues. Serum amylase and inflammatory cytokine levels were detected with specific ELISA kits. Immunofluorescence, immunohistochemical, Western-blot, and qRT-PCR were used to detect the expression levels of PSD-95, p38, and phosphorylated p38. Our findings showed that PSD-95 is expressed in the pancreatic tissues of humans, C57BL/6 mice, and AR42J cells, primarily in the cytoplasm. PSD-95 expression increased at 2 h, reaching the peak at 6 h in mice and 12 h in AR42J cells. IL-6, IL-8, and TNF-α increased within 2 h of disease induction. The pancreatic histopathologic score was greater in the PSD-95 inhibition group compared with the control (P < 0.05), while it was lesser when phosphorylation of p38 MAPK was inhibited compared with the PSD-95 inhibition group (P < 0.05). Moreover, phosphorylation of p38 MAPK increased statistically after PSD-95 knocked-down. In conclusion, PSD-95 effectively influences the pathological damage of the pancreas in acute pancreatitis by affecting the phosphorylation of p38 MAPK.  相似文献   

8.
Virdee K  Yoshida H  Peak-Chew S  Goedert M 《FEBS letters》2007,581(14):2657-2662
Intraneuronal inclusions made of hyperphosphorylated microtubule-associated protein tau are a defining neuropathological characteristic of Alzheimer's disease, and of several other neurodegenerative disorders. Many phosphorylation sites in tau are S/TP sites that flank the microtubule-binding repeats. Others are KXGS motifs in the repeats. One site upstream of the repeats lies in a consensus sequence for AGC kinases. This site (S214) is believed to play an important role in the events leading from normal, soluble to filamentous, insoluble tau. Here, we show that all AGC kinases tested phosphorylated S214. RSK1 and p70 S6 kinase also phosphorylated the neighbouring T212, a TP site that conforms weakly to the AGC kinase consensus sequence. MSK1 phosphorylated S214, as well as S262, a KXGS site in the first repeat, and S305 in the second repeat.  相似文献   

9.
Acute pancreatitis (AP) is an inflammatory process in which cytokines and chemokines are involved. After onset, extrapancreatic stimuli can induce the expression of cytokines in pancreatic acinar cells, thereby amplifying this inflammatory loop. To further determine the role and mechanism of irritating agents in the pathogenesis of AP, rat pancreatic tissues were stimulated with ascitic fluid (APa) and serum (APs) from rats with AP or with lipopolysaccharide (LPS). In addition, the alteration of heat shock protein 60 (HSP60) expression was evaluated. Rat pancreas was removed and meticulously snipped to fragments. The snips were cultured for up to 48 h. During this period, the tissue viability as well as amylase and TNF-α levels in the supernatant and the HSP60 expression in the pancreatic tissue before and after stimulation by APa, APs, and LPS were assayed time-dependently. At different time-points during the culture, the viability and the amylase activity in the pancreatic tissue remained largely stable. After stimulation with APa, APs, or LPS for 1 h, the pancreatic tissues showed some damage, and this was followed by a sharp decrease in the viability accompanied by increased levels of amylase and TNF-α in the culture medium 2 or 4 h after stimulation (p < 0.05). In contrast, both the HSP60 mRNA and protein levels had a relatively high expression in the freshly prepared tissue fragments (0 h). As the culturing period was extended, the expression of HSP60 mRNA decreased only slightly; at the same time, the HSP60 protein levels decreased over a prolonged culture time, significantly so from 12 through 48 h (p < 0.05). After stimulation with APs, APa, or LPS, both the expression of HSP60 mRNA and protein in the tissue fragments increased slightly at 1 h and decreased significantly thereafter at 2 and 4 h (p < 0.05). APa, APs, or LPS induce injuries on isolated pancreatic tissues, accompanied by an altered HSP60 expression pattern in a time-dependent manner.  相似文献   

10.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, for example, atherosclerosis. Angiotensin II (Ang II), a principal effector of the renin-angiotensin system (RAS), an important signaling molecule involved in atherogenic stimuli, is known to promote aging and cellular senescence. In the present study, induction of Ang II promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cells, and depressed cell proliferation. Ang II drastically decreased the expression level of Bcl-2, in part via the activation of extracellular signal-regulated kinase (ERK). Our results suggest that Ang II can induce HUVEC senescence; one of its molecular mechanisms is a probability that the mitogen-activated protein kinase (MAPK) signal pathway is involved in the process of pathological and physiological senescence of endothelial cells as well as vascular aging.  相似文献   

11.
12.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
LPS介导细胞激活的信号转导:从CD14到p38MAPK通路的研究   总被引:27,自引:0,他引:27  
近年来对脂多糖(LPS)介导细胞激活的信号转导过程已取得实质性进展,LPS与血浆LPS结合蛋白(LBP)结合被运输到单核巨噬细胞表面,与mCD14受体结合起起细胞激活。MAPK参与了LPS激活细胞产生肿瘤坏死因子(TNF)等活性物质的细胞内信号转导过程。p38MAPK对TNF-α等细胞因子具有重要的调节作用。对LPS激活细胞的信号转导研究呆能为治疗内毒素休克提供新的理论和思路。  相似文献   

14.
The release of proinflammatory cytokines after mycobacterial infection is a host immune response that may be propitious or deleterious to the host. Elevated levels of interleukin (IL)-6 are present in plasma of patients with active tuberculosis infection. The aim of this study was to investigate the role of mitogen-activated protein kinases in the secretion of interleukin-6 in THP-1 cells and human primary monocytes that were infected with Mycobacterium tuberculosis H37Rv, and its regulation by N-acetyl-L-cysteine, a potential antimycobacterial agent. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv induced rapidly, in a time-dependent manner, the phosphorylation of mitogen-activated protein kinase kinase 3/6 and p38 mitogen-activated protein kinase, accompanied by an upregulation of interleukin-6. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and nuclear factor-kappaB, we found that extracellular-signal regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear factor-kappaB were essential for M. tuberculosis H37Rv-induced interleukin-6 production in human primary monocytes. Pretreatment with N-acetyl-L-cysteine reduced, in a dose-dependent manner, M. tuberculosis H37Rv-induced activation of mitogen-activated protein kinase kinase 3/6 and interleukin-6 production in THP-1 cells.  相似文献   

15.
Activated protein C (APC) regulates the functional activity of mast cells by reducing release of β-hexosaminidase, the marker of mast cell degranulation. APC modulated not only spontaneous secretion from mast cells, but also secretion induced by the degranulators, proteinase-activated receptor agonist peptide (PAR1-AP) and compound 48/80. PAR1 desensitization by thrombin abolished the decrease of β-hexosaminidase secretion induced by low APC concentrations (≤1.5 nM). APC inactivated by phenylmethylsulfonyl fluoride (PMSF), did non mimic the enzyme action on mast cells. Duodenase (the duodenal proteinase) activated peritoneal mast cell via PAR1. APC abolished the proinflammatory effect of duodenase and PAR1-AP by reducing release of mast cell mediators. The effect of APC could be attributed to nitric oxide generation by mast cells because in the presence of L-NAME the secretory function restored. These data suggest involvement of mast cell PAR1 into regulatory mechanism responsible for the anti-inflammatory effect of APC.  相似文献   

16.
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.  相似文献   

17.
18.
The proved radio- and chemo-sensitizing capacity of genistein supports the potential use of this isoflavone in antitumour therapies. In this regard, we recently reported that genistein potentiates apoptosis induction by the anti-leukaemic agent arsenic trioxide (ATO) via reactive oxygen species (ROS) generation and p38-MAPK activation. In the present study we analyze the action of agents sharing functional similarities with the isoflavone, namely 17-β-estradiol, the DNA topoisomerase II poison etoposide, and the tyrosine kinase (PTK) inhibitors herbimycin A, epigallocatechin-3-gallate (EGCG) and adaphostin, in U937 and other human acute myeloid leukaemia cell lines. Co-treatment with 17-β-estradiol or etoposide failed to stimulate ROS production and potentiate ATO-provoked apoptosis, although etoposide caused G2/M cycle arrest, in the same manner as genistein. By contrast, all PTK inhibitors increased ATO-provoked apoptosis, with similar efficacy as genistein. Daidzein, a genistein analogue without PTK-inhibiting activity, failed to potentiate apoptosis, and co-treatment with orthovanadate attenuated the sensitizing capacity of genistein. Apoptosis potentiation by PTK inhibitors was associated to ROS over-accumulation and stimulation of p38-MAPK phosphorylation, was mimicked by conventional pro-oxidant agents (exogenous H2O2 and the glutathione-depleting agent dl-buthionine-(S,R)-sulfoximine), and was attenuated by the antioxidant agent N-acetyl-l-cysteine, and by the p38-MAPK inhibitor SB203580 or p38-MAPK-directed siRNAs. On the other hand, the PTK inhibitors caused disparate effects on ERK phosphorylation, and co-treatment with the MEK/ERK inhibitor PD98059 enhanced the pro-apoptotic capacity of the PTK inhibitors. These results suggest that PTK inhibition, together with ROS generation and p38-MAPK activation, are responsible for the chemo-sensitizing action of genistein and functionally related agents in leukaemia cells.  相似文献   

19.
The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10–15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.  相似文献   

20.
Environmental effects and mitogens determine cell phenotype in eukaryotes mainly through MAPK pathways. However, MAPK signaling pathways in T. thermophila have not been studied comprehensively. This study aims to express recombinant MPK2, a MAPK from T. thermophila, in E. coli to characterize its kinase activity. MPK2 was cloned by RT-PCR using degenerate oligonucleotide primers and RACE method. The full-length cDNA of the MPK2 gene is 1705 bp that includes 1281 bp ORF coding for a putative protein of 426 amino acids having a mass of 50.2 kDa. The putative MPK2 protein contains all eleven conserved subdomains that are characteristics of serine/threonine protein kinases, and a TDY motif, which is a putative dual phosphorylation site common in Protista. MPK2 displays highest 48% overall identity to human ERK5 (MAPK7). The expression vector pGEX4T-1-MPK2 was constructed by inserting the coding region of MPK2 cDNA into pGEX4T-1 after introducing the nine point mutations, and then transformed into E. coli BL21(DE3). Autophosphorylation of 76 kDa GST-MPK2 at tyrosine residues was confirmed not only by Western blot using anti-phosphotyrosine monoclonal antibody but also by in vitro kinase assay. GST-MPK2 was also able to phosphorylate the artificial substrate myelin basic protein. This study concludes that the free-living unicellular protist T. thermophila MPK2 has commonly conserved MAPK enzyme features, possibly involved in the regulation of cell survival responding to abiotic or biotic stressors, and the production and movement of haploid gametic nuclei between pairs during conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号