首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The naphthoquinone adduct 12,13-dihydro-N-methyl-6,11,13-trioxo-5H-benzo[4,5]cyclohepta[1,2-b]naphthalen-5,12-imine (hereafter called TU100) contains structural features of both the anthracycline and isoquinone chemotherapeutics. An initial characterization showed TU100 is cytotoxic to mammalian cells and can inhibit topoisomerase I and II. Analysis using topoisomerase I now reveals TU100 is a slow acting inhibitor targeting the enzyme in the absence of DNA. Diluting pre-incubated TU100 and topoisomerase I failed to alleviate inhibition, suggesting the enzyme is being covalently modified. Critical cysteine thiols were identified as the possible target based on the ability of reducing agents to reverse TU100 inhibition. Consistent with this idea, TU100 protected topoisomerase I from inactivation by the sulfhydryl modifying agent N-ethylmaleimide (NEM). Unlike agents nonspecifically reacting with thiols, however, TU100 is specific for topoisomerase because it failed to inhibit a cysteine dependent protease. These results indicate TU100 is a novel naphthoquinone that inactivates free topoisomerase I via alkylation of cysteine residues.  相似文献   

2.
Wang B  Miao ZW  Wang J  Chen RY  Zhang XD 《Amino acids》2008,35(2):463-468
A series of novel naphthoquinone fused cyclic alpha-aminophosphonates, 2-alkoxy-3,4-dihydro-2H-naphtho[2,3-e][1,4,2]oxazaphosphinane-5,10-dione 2-oxide 3-17 and naphthoquinone fused cyclic alpha-aminophosphonic monoester 18 were synthesized for the first time. These cyclic alpha-aminophosphonates were evaluated for antitumor activity on four human tumor cell lines, and three of them showed significant cytotoxicity (IC(50): 0.019-5.15 microM) comparable to that of the reference drug doxorubicin. Furthermore, inhibition assays for topoisomerase II-mediated relaxation of supercoiled DNA indicated that the naphthoquinone fused cyclic aminophosphonates were catalytic inhibitors of topoisomerase II.  相似文献   

3.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

4.
A series of bisintercalating DNA binding bisanthrapyrazole compounds containing piperazine linkers were designed by molecular modeling and docking techniques. Because the anthrapyrazoles are not quinones they are unable to be reductively activated like doxorubicin and other anthracyclines and thus they should not be cardiotoxic. The concentration dependent increase in DNA melting temperature was used to determine the strength of DNA binding and the bisintercalation potential of the compounds. Compounds with more than a three-carbon linker that could span four DNA base pairs achieved bisintercalation. All of the bisanthrapyrazoles inhibited human erythroleukemic K562 cell growth in the low to submicromolar concentration range. They also strongly inhibited the decatenation activity of topoisomerase IIα and the relaxation activity of topoisomerase I. However, as measured by their ability to induce double strand breaks in plasmid DNA, the bisanthrapyrazole compounds did not act as topoisomerase IIα poisons. In conclusion, a novel group of bisanthrapyrazole compounds were designed, synthesized, and biologically evaluated as potential anticancer agents.  相似文献   

5.
6.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 μg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 μg/ml)) compared to colon (IC50>20.0 μg/ml) and stomach (IC50>20.0 μg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

7.
Gopal YN  Jayaraju D  Kondapi AK 《Biochemistry》1999,38(14):4382-4388
The ability of two structurally different ruthenium complexes to interfere with the catalytic activity of topoisomerase II was studied to elucidate their molecular mechanism of action and relative antineoplastic activity. The first complex, [RuCl2(C6H6)(dmso)], could completely inhibit DNA relaxation activity of topoisomerase II and form a drug-induced cleavage complex. This strongly suggests that the drug interferes with topoisomerase II activity by cleavage complex formation. The bi-directional binding of [RuCl2(C6H6)(dmso)] to DNA and topoisomerase II was verified by immunoprecipitation experiments which confirmed the presence of DNA and ruthenium in the cleavage complex. The second complex, Ruthenium Salicylaldoxime, could not inhibit topoisomerase II relaxation activity appreciably and also could not induce cleavage complex formation, though its DNA-binding characteristics and antiproliferation activity were almost comparable to those of [RuCl2(C6H6)(dmso)]. The results suggest that the difference in ligands and their orientation around a metal atom may be responsible for topoisomerase II poisoning by the first complex and not by the second. A probable mechanism is proposed for [RuCl2(C6H6)(dmso)], where the ruthenium atom interacts with DNA and ligands of the metal atom form cross-links with topoisomerase II. This may facilitate the formation of a drug-induced cleavage complex.  相似文献   

8.
Numerous antitumor and antibacterial agents inhibit type II DNA topoisomerases, yielding, in each case, a complex of enzyme covalently bound to cleaved DNA. We are investigating the mechanism of inhibitor action by using the type II DNA topoisomerase of bacteriophage T4 as a model. The T4 topoisomerase is the target of antitumor agent 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Two m-AMSA-resistant phage strains were previously isolated, one with a point mutation in topoisomerase subunit gene 39 and the other with a point mutation in topoisomerase subunit gene 52. We report here that the wild-type T4 topoisomerase is inhibited by six additional antitumor agents that also inhibit the mammalian type II topoisomerase: ellipticine, 9-OH-ellipticine, 2-me-9-OH-ellipticinium acetate, mitoxantrone diacetate, teniposide, and etoposide. Further, one or both of the m-AMSA-resistance mutations alters the enzyme sensitivity to each of these agents, conferring either cross-resistance or enhanced sensitivity. Finally, the gene 39 mutation confers on T4 topoisomerase a DNA gyrase-like sensitivity to the gyrase inhibitor oxolinic acid, thus establishing a direct link between the mechanism of action of the anti-bacterial quinolones and that of the antitumor agents. These results strongly suggest that diverse inhibitors of type II topoisomerases share a common binding site and a common mechanism of action, both of which are apparently conserved in the evolution of the type II DNA topoisomerases. Alterations in DNA cleavage site specificity caused by either the inhibitors or the m-AMSA-resistance mutations favor the proposal that the inhibitor binding site is composed of both protein and DNA.  相似文献   

9.
A considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.  相似文献   

10.
Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90–topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.  相似文献   

11.
DNA topoisomerases I and II are essential for cell survival and play critical roles in DNA metabolism and structure. Inhibitors of topoisomerase constitute a novel family of antitumor agents with demonstrated clinical activity in human malignancies. The clinical use of these agents is limited due to severe toxic effects on normal cells. Therefore, there is a need to develop novel, nontoxic topoisomerase inhibitors that have the ability to spare normal cells. Recent studies have shown that green tea and its major polyphenolic constituent, epigallocatechin-3-gallate (EGCG), impart growth inhibitory responses to cancer cells but not to normal cells. Based on the knowledge that EGCG induces DNA damage, cell cycle arrest, and apoptosis, we considered the possibility of the involvement of topoisomerase in the antiproliferative response of EGCG. Here, for the first time, we show that EGCG inhibits topoisomerase I, but not topoisomerase II in several human colon carcinoma cell lines. Based on this study it is tempting to suggest that combination of EGCG with other conventional topoisomerase inhibitors could be an improved strategy for treatment of colon cancer. The possible role of EGCG as a chemotherapeutic agent needs to be investigated.  相似文献   

12.
The novel DNA interactive isoquinolino[5,4-ab]phenazine derivatives were designed and synthesized. Their inhibitory abilities toward topoisomerase I, antitumor activities and DNA photo-cleaving abilities were examined. The substituents at peri sites of two phenazine N atoms played very important roles for all these biological activities. At a concentration of 100 microM, all these phenazine derivatives (but A2 and A6) exhibited an inhibitory activity toward topoisomerase I. A6 had efficient antitumor activities against both human lung cancer cell (A549) and murine leukemia cell (P388). A1, A5, and A6 exhibited antitumor activities selectively against P388. A2 was the most efficient DNA photocleaver, which had converted supercoiled DNA from form I to form II at <1 microM. Under anaerobic conditions, the electron transfer mechanism mainly contributed to DNA photo-induced cleavage, while under aerobic conditions, superoxide anion was also involved in this process.  相似文献   

13.
The phosphorylation of DNA topoisomerase I in quiescent murine 3T3-L1 fibroblasts treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was characterized by in vivo labeling with [32P] orthophosphate and immunoprecipitation with a scleroderma anti-DNA topoisomerase I autoantibody. DNA topoisomerase I phosphorylation was stimulated 4-fold by 2 h of TPA treatment (TPA at 100 ng/ml maximally enhanced phosphorylation). Purified DNA topoisomerase I was phosphorylated in vitro in a Ca2+ and phospholipid-dependent fashion by types I, II, and III protein kinase C. The phosphorylation reaction was stimulated by TPA and had an apparent K(m) of 0.4 microM. DNA topoisomerase I was phosphorylated in vivo and in vitro predominantly at serine. The major tryptic phosphopeptides from DNA topoisomerase I in TPA-treated fibroblasts and phosphorylated by protein kinase C comigrated in thin-layer electrophoresis. The half-life of incorporated phosphate on DNA topoisomerase I was 40 min in both TPA-treated and control cells. These results suggest that phosphorylation is a mechanism for activating DNA topoisomerase I in fibroblasts treated with TPA and that protein kinase C functions in the phosphorylation.  相似文献   

14.
15.
Coralyne and several other synthetic benzo[a,g]quinolizium derivatives related to protoberberine alkaloids have exhibited activity as topoisomerase poisons. These compounds are characterized by the presence of a positively charged iminium group, which has been postulated to be associated with their pharmacological properties. The objective of the present study was to devise stable noncharged bioisosteres of these compounds. Several similarly substituted benz[a]acridine and benz[c]acridine derivatives were synthesized and their relative activity as topoisomerase poisons was determined. While the benz[c]acridine derivatives evaluated as part of this study were devoid of topoisomerase poisoning activity, several dihydrobenz[a]acridines were able to enhance DNA cleavage in the presence of topo I. In contrast to certain protoberberine derivatives that did exhibit activity as topo II poisons, none of the benz[a]acridines derivatives enhanced DNA cleavage in the presence of topo II. Among the benz[a]acridines studied, 5,6-dihydro-3,4-methylenedioxy-9,10-dimethoxybenz[a]acridine, 13e, was the most potent topo I poison, with comparable potency to coralyne. These data suggest that heterocyclic compounds structurally related to coralyne can exhibit potent topo I poisoning activity despite the absence of an iminium cation within their structure. In comparison to coralyne or other protoberberine derivatives, these benz[a]acridine derivatives possess distinctly different physicochemical properties and represent a novel series of topo I poisons.  相似文献   

16.
Several vitamin A compounds have been tested for their ability to suppress formation of DNA adduct by the carcinogen benzo[a]pyrene (B[a]P) in an in vitro reaction catalyzed by rat liver microsomes. Retinol, retinal, 3-dehydroretinol and 3-hydroxyretinol were found to be effective inhibitors of adduct formation. Certain carotenoids that are precursors of these retinoids also displayed considerable inhibitory capacity. Carotenoids and the 3-substituted retinoids appeared to modulate the DNA adduct formation exclusively through their action on microsomal enzymes, since an effective inhibition in each case was observed on the formation of B[a]P-7,8-diol, a proximate carcinogenic metabolite of B[a]P. Unsubstituted retinoids, on the other hand, had marginal effect on enzymes but were found effective in accelerating inactivation of B[a]P-7,8-diol-9,10-epoxide, the ultimate carcinogenic metabolite that binds to DNA.  相似文献   

17.
Repair of UV-induced lesions in Xenopus laevis oocytes.   总被引:12,自引:7,他引:5       下载免费PDF全文
We characterized a DNA repair system in frog oocytes by comicroinjection of UV-irradiated pBR322 DNA and radiolabeled nucleotides. Repair synthesis was monitored by incorporation of label into recovered pBR322 DNA and by a novel method in which the removal of UV photoproducts was determined from the shift of DNA topoisomers that occurs during gel electrophoresis upon repair of these lesions. We investigated the effects of several drugs in the oocyte system and found that although novobiocin, an inhibitor of topoisomerase II, was an effective inhibitor of repair, VM-26, another inhibitor of topoisomerase II, was not. In addition, the topoisomerase I inhibitor camptothecin had no effect on repair in this system. Finally, circular DNA (either supercoiled or nicked circular) was repaired at least 50 times more rapidly than linear DNA.  相似文献   

18.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 microg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 microg/ml)) compared to colon (IC50>20.0 microg/ml) and stomach (IC50>20.0 microg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

19.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

20.
Fostriecin causes a delayed inhibition of replicative DNA synthesis in human cells, consistent with a role for DNA topoisomerase II (its target enzyme) at a late stage in replication. Fostriecin does not inhibit UV-induced excision repair. The less specific inhibitor novobiocin blocks repair in permeabilised cells given a low dose of UV, presumably through a mechanism other than the inhibition of topoisomerase II. Its effect cannot be accounted for by a depletion of the ATP required for incision. Camptothecin, an inhibitor of DNA topoisomerase I, blocks replicative DNA synthesis immediately but incompletely, suggesting a participation of topoisomerase I at the replication fork, but it, too, has no influence on DNA repair. We thus find no evidence for involvement of either topoisomerase I or II in the response of cells to UV damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号