首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Human ESCRT-I is a multiprotein complex that plays essential roles in HIV budding and endosomal protein sorting. All ESCRT-I complexes contain three common subunits (TSG101, VPS28, and VPS37), and a fourth subunit of yeast ESCRT-I was recently identified (Mvb12p). We now demonstrate that two related human proteins (MVB12A and MVB12B) constitute the fourth class of metazoan ESCRT-I subunits, despite lacking identifiable sequence homology to Mvb12p. Hydrodynamic studies indicate that soluble human ESCRT-I complexes contain one copy of each of the four subunit types. MVB12 subunits associate with the core region of the binary TSG101-VPS37 complex through conserved C-terminal sequence elements. Both MVB12 depletion and overexpression inhibit HIV-1 infectivity and induce unusual viral assembly defects, including aberrant virion morphologies and altered viral Gag protein processing. Taken together, these studies define the composition of human ESCRT-I complexes and indicate that the MVB12 subunits play a unique role in regulating ESCRT-mediated virus budding.  相似文献   

4.
The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.  相似文献   

5.
Multivesicular body (MVB) formation is the result of invagination and budding of the endosomal limiting membrane into its intralumenal space. These intralumenal vesicles (ILVs) contain a subset of endosomal transmembrane cargoes destined for degradation within the lysosome, the result of active selection during MVB sorting. Membrane bending and scission during ILV formation is topologically similar to cytokinesis in that both events require the abscission of a membrane neck that is oriented away from the cytoplasm. The endosomal sorting complexes required for transport (ESCRTs) represent cellular machinery whose function makes essential contributions to both of these processes. In particular, the AAA-ATPase Vps4 and its substrate ESCRT-III are key components that seem to execute the membrane abscission reaction. This review summarizes current knowledge about the Vps4-ESCRT-III system and discusses a model for how the recruitment of Vps4 to the different sites of function might be regulated.  相似文献   

6.
Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.  相似文献   

7.
The process in which ubiquitin ( Ub ) conjugation is required for trafficking of integral membrane proteins into multivesicular bodies ( MVBs ) and eventual degradation in the lumen of lysosomes/vacuoles is well defined. However , Ub ‐independent pathways into MVBs are less understood. To better understand this process, we have further characterized the membrane protein Sna 3, the prototypical Ub ‐independent cargo protein sorted through the MVB pathway in yeast. We show that Sna 3 trafficking to the vacuole is critically dependent on Rsp 5 ligase activity and ubiquitination. We find Sna 3 undergoes Ub ‐dependent MVB sorting by either becoming ubiquitinated itself or associating with other ubiquitinated membrane protein substrates. In addition, our functional studies support a role for Sna 3 as an adaptor protein that recruits Rsp 5 to cargo such as the methionine transporter Mup 1, resulting in efficient Mup 1 delivery to the vacuole .  相似文献   

8.
Vps27 recruits ESCRT machinery to endosomes during MVB sorting   总被引:1,自引:0,他引:1  
Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.  相似文献   

9.
Multivesicular bodies (MVBs) are critical for a variety of cellular functions ranging from lysosomal degradation to the budding of HIV. To date, delivery into MVBs has been dependent on the ESCRT machinery. However, analysis of a melanosomal protein has uncovered an alternative pathway for MVB sorting.  相似文献   

10.
Multivesicular bodies (MVBs) are endosomes that have internalized portions of the limiting membrane into the compartment, thereby forming intralumenal vesicles. This vesicle formation is unusual in that it is directed away from the cytoplasm, which requires a unique mechanism unlike any mechanism described for other vesicle formation events. The best contenders for the machinery that drives MVB vesicle formation are the ESCRT protein complexes. However, increasing evidence suggests that lipids may play a key role in this membrane-deformation process. This review attempts to combine the seemingly contradictory findings into a MVB vesicle formation model that is based on a lipid-driven and ESCRT-regulated mechanism.  相似文献   

11.
12.
13.
The proposed genetic correlation analysis, that involves the partitioning of the overall genetic correlation into an additive and a non-additive component, has been applied to data obtained from a diallel experiment involving 12 white modified opaque-2 maize inbred lines. The correlation analysis provided an insight into possible indirect selection strategies for the improvement of inferior kernel quality traits associated with the opaque-2 gene. Direct selection for high yield and low vitreousness rating would provide an efficient selection strategy for the development of high-yielding modified opaque-2 maize hybrids with desirable endosperm traits. It was concluded that it is not necessary to conduct the density, hardness and breakability determinations.  相似文献   

14.
Density functional theory (DFT) calculations were used to study the effect of scandium doping on the structural, energetic, electronic, linear and nonlinear optical (NLO) properties of Be12O12, Mg12O12 and Ca12O12 nanoclusters. Scandium (Sc) doping on nanoclusters leads to narrowing of their E g, which enhances their conductance greatly. Also, the polarizability (α) and first hyperpolarizability (β0) of nanoclusters were dramatically increased as Be, Mg or Ca atoms are substituted with a Sc atom. Among all clusters, α and β0 values for Sc-doped Ca12O12 were the largest. Consequently, the effect of the doping atom, as well as of cluster size, on electronic and optical properties was explored. Time dependent (TD)-DFT calculations were also carried out to confirm the β0 values; the results show that the higher value of first hyperpolarizability belongs to Sc-doped Ca12O12, which has the smallest transition energy (ΔEgn). The results obtained show that these clusters can be candidates for using in electronic devices and NLO materials in industry.  相似文献   

15.
16.
17.
18.
Highlights? HD-PTP is essential for sorting EGFR to the MVB lumen ? HD-PTP binds the ESCRT-0 subunit STAM2 at two sites ? CHMP4B and UBPY displace EGFR from ESCRT-0 and drive ESCRT-III association ? UBPY is important for sorting EGFR to the MVB lumen  相似文献   

19.
The appropriate sorting of vesicular cargo, including cell-surface proteins, is critical for many cellular functions. Ubiquitinated cargo is targeted to endosomes and digested by lysosomal enzymes. We previously identified AMSH, a deubiquitination enzyme (DUB), to be involved in vesicular transport. Here, we purified an AMSH-binding protein, CHMP3, which is an ESCRT-III subunit. ESCRT-III functions on maturing endosomes, indicating AMSH might also play a role in MVB/late endosomes. Expression of an AMSH mutant lacking CHMP3-binding ability resulted in aberrant endosomes with accumulations of ubiquitinated cargo. Nevertheless, CHMP3-binding capability was not essential for AMSH's in vitro DUB activity or its endosomal localization, suggesting that, in vivo, the deubiquitination of endosomal cargo is CHMP3-dependent. Ubiquitinated cargo also accumulated on endosomes when catalytically inactive AMSH was expressed or AMSH was depleted. These results suggest that both the DUB activity of AMSH and its CHMP3-binding ability are required to clear ubiquitinated cargo from endosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号