首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To investigate the clinical features and cytochrome P450 family 4 subfamily V polypeptide 2 (CYP4V2) gene mutations in 14 Chinese families with Bietti crystalline dystrophy (BCD).

Methods

Seventeen patients from 14 unrelated Chinese families with BCD were recruited for complete clinical ophthalmic examination and genetic study. The 11 exons of CYP4V2 were amplified from genomic DNA of all patients and their family members by polymerase chain reaction (PCR) and then sequenced. Exons of TIMP3 were also sequenced in BCD patient associated with choroidal neovascularization (CNV). One hundred and seventy unrelated healthy Chinese subjects were screened for mutations in CYP4V2.

Results

All 17 patients with BCD had mutations in CYP4V2; one of these mutations was novel (c.219T>A, p.F73L) and four other mutations had been reported. The p.F73L mutation was a commonly detected mutation in our study (seven out of 34 alleles), either in the homozygous state or in the heterozygous state. Among the patients, considerable phenotypic variability was detected, both within and between families. Screening of TIMP3 did not find any mutation in the BCD patient associated with CNV.

Conclusion

The novel CYP4V2 c.219T>A (p.F73L) mutation may be another recurrent mutation in Chinese patients with BCD. Our study expands the mutation spectrum of CYP4V2 and characterizes novel genotype–phenotype associations in Chinese patients with BCD.  相似文献   

2.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessively inherited disorders characterized by impaired production of adrenal steroids. Approximately 95% of all CAH are caused by mutations of the CYP21A2 that encodes 21-hydroxylase. In this study, mutation analyses of CYP21A2 were performed in 48 CAH patients from 45 Turkish families with the clinical diagnosis of 21-hydroxylase deficiency (21OHD). While in 39 (86.7%) of 21OHD patients, disease causing CYP21A2 mutations were identified in both alleles, in two 21OHD patients CYP21A2 mutations were identified only in one allele. In four patients, mutation was not detected at all. In total, seventeen known and one novel, disease causing CYP21A2 mutations were observed. Among identified mutations, previously described c.293-13C/A>G, large rearrangements and p.Q319X mutations were the most common mutations accounting for 33.3%, 14.4% and 12.2% of all evaluated chromosomes, respectively. In six families (13.3%) a novel founder mutation, c.2T>C (p.M1?), inactivating the translation initiation codon was found. This mutation is not present in pseudogene CYP21A1P and causes the classical form of the disease in six patients. In addition, depending on the nature of the rearrangements CYP21A1P/CYP21A2 chimeras were further classified as CHc/d, and CH-1c was shown to be the most prominent chimera in our study group. In conclusion, with this study we identified a novel founder CYP21A2 mutation and suggest a further classification for CYP21A1P/CYP21A2 chimeras depending on the combination of junction site position and whether it is occurred as a result of deletion or conversion. Absence of disease causing mutation of CYP21A2 in ten of screened ninety chromosomes suggests the contribution of regulatory elements in occurrences of CAH due to the 21OHD.  相似文献   

3.
Pelizaeus Merzbacher disease and Pelizaeus Merzbacher like disease (PMLD) are hypomyelinating leucodystrophies of the central nervous system (CNS) with a very similar phenotype. PMD is an X-linked recessive condition caused by mutations, deletion duplication or triplication of the proteolipid protein 1 gene (PLP1). However, PMLD is a recessive autosomal hypomyelinating leukodystrophy caused by mutations of the GJC2 gene. In this study, we analyzed 5 patients belonging to 4 Tunisian families. Direct sequencing of GJC2 gene in all probands showed the same homozygous founder mutation c.-167A>G localized in the promoter region. We also generated two microsatellite markers GJC2 195GT and GJC2 76AC closed to the GJC2 gene to confirm the presence of a founder effect for this mutation. Haplotype study showed that the c.-167A>G promoter mutation occurred in a specific founder haplotype in Tunisian population. The identification of this founder mutation has important implications towards genetic counseling in relatives of these families and the antenatal diagnosis.  相似文献   

4.
To develop a screening kit for detecting mutation hotspots of the phenylalanine hydroxylase (PAH) gene. Thirteen exons of the PAH gene were sequenced in 84 cases with phenylketonuria (PKU) diagnosed during neonatal genetic and metabolic disease screening in Shaanxi province, and their mutations were analyzed. We designed and developed a screening kit to detect nine mutation sites covering more than 50% of the PAH mutations found in Shaanxi province (c.728G>A, c.1197A>T, c.331C>T, c.1068C>A, c.611A>G, c.1238G>C, c.721C>T, c.442-1G>A, and c.158G>A) by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) combined with fluorescent probe technology. Peripheral blood and dried blood samples from PKU families were used for clinical verification of the newly developed kit. PAH gene mutations were detected in 84 children diagnosed with PKU. A total of 159 mutant alleles were identified, consisting of 100 missense mutations, 28 shear mutations, 24 nonsense mutations, and 7 deletion mutations. Exon 7 had the highest mutation frequency (32.08%). Among them, the mutation frequency of p.R243Q was the highest, accounting for 20.13% of all mutations, followed by p.R111X, IVS4-1G>A, EX6-96A>G, and p.R413P; these five loci accounted for 47.17% (75/159) of all mutations. In addition, we identified three previously unreported PAH gene mutations (p.C334X, p.G46D, and p.G256D). Fifteen mutation sites were identified in the 47 PAH carriers identified by next-generation sequencing (NGS), which were verified by the newly developed kit, with an agreement rate of 100%. This newly developed kit based on ARMS-PCR combined with fluorescent probe technology can be used to detect common PAH gene mutations.  相似文献   

5.

Background

Cystic fibrosis (CF) is a multiorganic autosomal recessive disorder, caused by mutation in cystic fibrosis transmembrane conductance regulator (CFTR). CF is highly heterogeneous in Iranian population and molecular diagnosis based on direct identification of mutations is not completely efficient. The use of polymorphic intragenic markers not only can facilitate phenotype prediction in prenatal diagnosis by gene tracking, but also can lead to the demonstration of possible associations between haplotypes and specific mutations.

Methods

60 CF patients and 53 fertile normal subjects originating from North of Iran were analyzed for F508del mutation and c.1210-12T(5_9), c.1408A>G and c.744-33GATT(6_8) polymorphisms.

Results

c.1210-12T[7] is the most prevalent allele in normal individuals and CF non-F508del patients with 87.7%and 86.7% frequencies respectively. c.1408A>G survey showed that frequency of allele G and A is nearly equal in both non-F508del CF patients and normal individuals. c.744-33GATT(6_8) study showed that 7 repeat is the most prevalent allele in normal individuals and non-F508del CF patients with 80.2% and 82.1% frequencies respectively. The [c.1408A; c.1210-12T[9]; c.744-33GATT[6]] haplotype was only associated with mutant alleles including F508del.

Conclusions

The allelic distribution and heterozygosity results suggest that c.1408A>G, c.1210-12T(5_9) and c.744-33GATT(6_8) can contribute to carrier detection and prenatal diagnosis of CF in Iranian families with previous history of the disease.  相似文献   

6.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   

7.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   

8.
Hearing loss is the most frequent sensory disorder. It affects 3 in 1000 newborns. It is genetically heterogeneous with 60 causally-related genes identified to date. Mutations in GJB2 gene account for half of all cases of non-syndromic deafness. The aim of this study was to determine the relative frequency of GJB2 allele variants in Tunisia. In this study, we screened 138 patients with congenital hearing loss belonging to 131 families originating from different parts of Tunisia for mutations in GJB2 gene. GJB2 mutations were found in 39% of families (51/131). The most common mutation was c.35delG accounting for 35% of all cases (46/131). The second most frequent mutation was p.E47X present in 3.8% of families. Four identified mutations in our cohort have not been reported in Tunisia; p.V37I, c.235delC, p.G130A and the splice site mutation IVS1+1G>A (0.76%). These previously described mutations were detected only in families originating from Northern and not from other geographical regions in Tunisia. In conclusion we have confirmed the high frequency of c.35delG in Tunisia which represents 85.4% of all GJB2 mutant alleles. We have also extended the mutational spectrum of GJB2 gene in Tunisia and revealed a more pronounced allelic heterogeneity in the North compared to the rest of the country.  相似文献   

9.
Friedreich ataxia (FRDA) is the most common inherited ataxia. About 98% of mutant alleles have an expansion of a GAA trinucleotide repeat in intron 1 of the affected gene, FRDA. The other 2% are point mutations. Of the 17 point mutations so far described, three appear to be more common. One of these is the G130V mutation in exon 4 of FRDA. G130V, when present with an expanded GAA repeat on the other allele, is associated with an atypical FRDA phenotype. Haplotype analysis was undertaken on the four families who have been described with this mutation. The results suggest a common founder for this mutation. Although marked differences in extragenic marker haplotypes were seen in one family, similar intragenic haplotyping suggests the same mutation founder for this family with the differences explicable by two recombination events.  相似文献   

10.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

11.
Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.  相似文献   

12.
Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of l-isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence of C5-carnitine in blood may indicate SBCADD, the disorder may be detected by MS/MS-based routine newborn screening. It is, therefore, important to gain more knowledge about the clinical presentation and the mutational spectrum of SBCADD. In the present study, we have studied two unrelated families with SBCADD, both with seizures and psychomotor delay as the main clinical features. One family illustrates the fact that affected individuals may also remain asymptomatic. In addition, the normal level of newborn blood spot C5-acylcarnitine in one patient underscores the fact that newborn screening by MS/MS currently lacks sensitivity in detecting SBCADD. Until now, seven mutations in the SBCAD gene have been reported, but only three have been tested experimentally. Here, we identify and characterize an IVS3+3A>G mutation (c.303+3A>G) in the SBCAD gene, and provide evidence that this mutation is disease-causing in both families. Using a minigene approach, we show that the IVS3+3A>G mutation causes exon 3 skipping, despite the fact that it does not appear to disrupt the consensus sequence of the 5′ splice site. Based on these results and numerous literature examples, we suggest that this type of mutation (IVS+3A>G) induces missplicing only when in the context of non-consensus (weak) 5′ splice sites. Statistical analysis of the sequences shows that the wild-type versions of 5′ splice sites in which +3A>G mutations cause exon skipping and disease are weaker on average than a random set of 5′ splice sites. This finding is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes.  相似文献   

13.
Mutations in the cone-rod homeobox gene (CRX) are associated with cone-rod dystrophy (CORD), Leber congenital amaurosis (LCA), and, in rare cases, retinitis pigmentosa (RP). In this study, three variations were detected in 3 of 130 families with CORD, including two novel mutations, c.239A>G (p.Glu80Gly) and c.362C>T (p.Ala121Val). So far, 49 mutations in CRX were reported, affecting about 2.35% of LCA, 4.76% of CORD, and 0.80% of RP. These mutations can be classified as missense (38.78%), nonsense (4.08%), deletion (36.73%), insertion (16.33%), and indel (4.08%). They distributed in the three coding exons without mutation hot spots. No clear genotype-phenotype correlation could be established so far.  相似文献   

14.
15.
We investigated the mutation spectrum of the phenylalanine hydroxylase gene (PAH) in a cohort of patients from 135 Slovak PKU families. Mutational screening of the known coding region, including conventional intron splice sites, was performed using high-resolution melting analysis, with subsequent sequencing analysis of the samples showing deviated melting profiles compared to control samples. The PAH gene was also screened for deletions and duplications using MLPA analysis. Forty-eight different disease causing mutations were identified in our patient group, including 30 missense, 8 splicing, 7 nonsense, 2 large deletions and 1 small deletion with frameshift; giving a detection rate of 97.6%. The most prevalent mutation was the p.R408W, occurring in 47% of all alleles, which concurs with results from neighboring and other Slavic countries. Other frequent mutations were: p.R158Q (5.3%), IVS12 + 1G>A (5.3%), p.R252W (5.1%), p.R261Q (3.9%) and p.A403V (3.6%). We also identified three novel missense mutations: p.F233I, p.R270I, p.F331S and one novel variant: c.− 30A>T in the proximal part of the PAH gene promoter. A spectrum of 84 different genotypes was observed and a genotype based predictions of BH4-responsiveness were assessed. Among all genotypes, 36 were predicted to be BH4-responsive represented by 51 PKU families. In addition, genotype–phenotype correlations were performed.  相似文献   

16.
17.
Aims We aim to identify the molecular defects in the ATP7B, the causal gene for Wilson disease (WD), in eastern Indian patients and attempt to assess the overall mutation spectrum in India for detection of mutant allele for diagnostic purposes. Methods Patients from 109 unrelated families and their first-degree relatives comprising 400 individuals were enrolled in this study as part of an ongoing project. Genomic DNA was prepared from the peripheral blood of Indian WD patients. PCR was done to amplify the exons and flanking regions of the WD gene followed by sequencing, to identify the nucleotide variants. Results In addition to previous reports, we recently identified eight mutations including three novel (c.3412 + 1G > A, c.1771 G > A, c.3091 A > G) variants, and identified patients with variable phenotype despite similar mutation background suggesting potential role of modifier locus. Conclusions So far we have identified 17 mutations in eastern India including five common mutations that account for 44% of patients. Comparative study on WD mutations between different regions of India suggests high genetic heterogeneity and the absence of a single or a limited number of common founder mutations. Genotype–phenotype correlation revealed that no particular phenotype could be assigned to a particular mutation and even same set of mutations in different patients showed different phenotypes.  相似文献   

18.
Niemann–Pick disease (NPD) is a lysosomal storage disorder that results from the deficiency of a lysosomal enzyme, acid sphingomyelinase. Niemann–Pick disease type A and B is caused by mutations in the sphingomyelin phosphodiesterase gene (SMPD1) coding for ASM. The aim of this study was to evaluate the spectrum of SMPD1 gene mutations in Turkish NPD patients and to study genotype–phenotype associations. We present a molecular analysis of 10 Turkish NPD type A/B patients. Four of the patients had type A and six had type B NPD. All mutant SMPD1 alleles were identified, including 5 different mutations, 1 of which was novel. These mutations included three missense mutations: c.409T>C (p.L137P), c.1262 A>G (p.H421R) and c.1552T>C (p.L549P), a common frameshift mutation in codon 189, identified in three patients, is caused by the deletion of the 567T, introducing a stop codon 65 amino acids downstream (p.P189fsX65), and a novel frameshift mutation c.1755delC (p.P585PfsX24) which was not reported previously.  相似文献   

19.
Mutation of hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch–Nyhan syndrome, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior, or HPRT-related gout with hyperuricemia. Four mutations were detected in two Lesch–Nyhan families and two families with partial deficiency since our last report. A new mutation of G to TT (c.456delGinsTT) resulting in a frameshift (p.Q152Hfs*3) in exon 3 has been identified in one Lesch–Nyhan family. In the other Lesch–Nyhan family, a new point mutation in intron 7 (c.532 + 5G > T) causing splicing error (exon 7 excluded, p.L163Cfs*4) was detected. In the two partial deficiency cases with hyperuricemia, two missense mutations of p.D20V (c.59A > T) and p.H60R (c.179A >G) were found. An increase of erythrocyte PRPP concentration was observed in the respective phenotypes and seems to be correlated with disease severity.  相似文献   

20.
Molecular defects in the gene encoding steroid 21-hydroxylase (CYP21) result in impairment of adrenal steroid synthesis in patients affected with autosomal-recessive congenital adrenal hyperplasias (CAH). In this study, we report on the molecular screening of six point mutations, large deletions, gene conversion events and duplications in 25 unrelated Lebanese families affected by CAH due to steroid 21-hydroxylase. The methods used (PCR-digestion and southern blot) allowed the detection of 96% of the disease chromosomes. In classical forms, the most frequent mutation was the splice site mutation in intron 2 accounting for 39% of the disease alleles. Gene conversion events accounted for 14% of the alleles, but no large deletions were found. In nonclassical forms, the V281L mutation in exon 7 represent 86% of the tested alleles. Genotype-phenotype correlations were as expected: Delta 8nt, Q318X and gene conversion correspond to SW forms, whereas the intron 2 splice site mutation may give either SW or SV forms; the V281L mutation was responsible for nonclassical forms. The spectrum of mutations underlines the genetic diversity of the Lebanese population. No correlation could be drawn out between mutations and some specific religious communities, except for the Delta 8nt mutation, which is present only in the Christian Maronite group. Molecular study of the CYP21 gene might constitute a good support for clinicians, especially in consanguineous families, for whom we could provide genetic counselling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号