首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN: We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS: AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION: DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.  相似文献   

2.
Cancer stem cell (SC) chemoresistance may be responsible for the poor clinical outcome of non-small-cell lung cancer (NSCLC) patients. In order to identify the molecular events that contribute to NSCLC chemoresistance, we investigated the DNA damage response in SCs derived from NSCLC patients. We found that after exposure to chemotherapeutic drugs NSCLC-SCs undergo cell cycle arrest, thus allowing DNA damage repair and subsequent cell survival. Activation of the DNA damage checkpoint protein kinase (Chk) 1 was the earliest and most significant event detected in NSCLC-SCs treated with chemotherapy, independently of their p53 status. In contrast, a weak Chk1 activation was found in differentiated NSCLC cells, corresponding to an increased sensitivity to chemotherapeutic drugs as compared with their undifferentiated counterparts. The use of Chk1 inhibitors in combination with chemotherapy dramatically reduced NSCLC-SC survival in vitro by inducing premature cell cycle progression and mitotic catastrophe. Consistently, the co-administration of the Chk1 inhibitor AZD7762 and chemotherapy abrogated tumor growth in vivo, whereas chemotherapy alone was scarcely effective. Such increased efficacy in the combined use of Chk1 inhibitors and chemotherapy was associated with a significant reduction of NSCLC-SCs in mouse xenografts. Taken together, these observations support the clinical evaluation of Chk1 inhibitors in combination with chemotherapy for a more effective treatment of NSCLC.  相似文献   

3.
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.  相似文献   

4.
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells, and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double-strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used two isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild-type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 “deficient-like” phenotype in p53 mutant tumor cells, while sparing normal tissue.Key words: pancreatic cancer, Chk1, PARP1, radiosensitization, p53  相似文献   

5.
Approximately 40% of rectal cancers harbor activating K-RAS mutations, and these mutations are associated with poor clinical response to chemoradiotherapy. We aimed to identify small molecule inhibitors (SMIs) that synergize with ionizing radiation (IR) (“radiosensitizers”) that could be incorporated into current treatment strategies for locally advanced rectal cancers (LARCs) expressing mutant K-RAS. We first optimized a high-throughput assay for measuring individual and combined effects of SMIs and IR that produces similar results to the gold standard colony formation assay. Using this screening platform and K-RAS mutant rectal cancer cell lines, we tested SMIs targeting diverse signaling pathways for radiosensitizing activity and then evaluated our top hits in follow-up experiments. The two most potent radiosensitizers were the Chk1/2 inhibitor AZD7762 and the PI3K/mTOR inhibitor BEZ235. The chemotherapeutic agent 5-fluorouracil (5-FU), which is used to treat LARC, synergized with AZD7762 and enhanced radiosensitization by AZD7762. This study is the first to compare different SMIs in combination with IR for the treatment of K-RAS mutant rectal cancer, and our findings suggest that Chk1/2 inhibitors should be evaluated in new clinical trials for LARC.  相似文献   

6.
7.
In order to determine the relative contribution of checkpoint abrogation and subsequent aberrant mitotic entry to gemcitabine chemosensitization by CHK1 inhibition, we established a model utilizing the CDK inhibitors roscovitine or purvalanol A to re-establish cell cycle arrest and prevent aberrant mitotic entry in pancreatic cancer cells treated with gemcitabine and the CHK inhibitor AZD7762. In this study, we report that the extent of aberrant mitotic entry, as determined by flow cytometry for the mitotic marker phospho-Histone H3 (Ser10), did not reflect the relative sensitivities of pancreatic cancer cell lines to gemcitabine chemosensitization by AZD7762. In addition, re-establishing gemcitabine-induced cell cycle arrest either pharmacologically, with roscovitine or purvalanol A, or genetically, with cyclin B1 siRNA, did not inhibit chemosensitization uniformly across the cell lines. Furthermore, we found that AZD7762 augmented high-intensity γH2AX signaling in gemcitabine-treated cells, suggesting the presence of replication stress when CHK1 is inhibited. Finally, the ability of roscovitine to prevent chemosensitization correlated with its ability to inhibit AZD7762-induced high-intensity γH2AX, but not aberrant pHH3, suggesting that the effects of AZD7762 on DNA replication or repair rather than aberrant mitotic entry determine gemcitabine chemosensitization in pancreatic cancer cells.  相似文献   

8.
Checkpoint kinase 1 (Chk1) regulates cell cycle checkpoints and DNA damage repair in response to genotoxic stress. Inhibition of Chk1 is an emerging strategy for potentiating the cytotoxicity of chemotherapeutic drugs. Here, we demonstrate that AZD7762, an ATP-competitive Chk1/2 inhibitor induces γ-H2AX in gemcitabine-treated cells by altering both dynamics and stability of replication forks, allowing the firing of suppressed replication origins as measured by DNA fiber combing and causing a dramatic increase in DNA breaks as measured by comet assay. Furthermore, we identify ATM and DNA-PK, rather than ATR, as the kinases mediating γ-H2AX induction, suggesting AZD7762 converts stalled forks into double strand breaks (DSBs). Consistent with DSB formation upon fork collapse, cells deficient in DSB repair by lacking BRCA2, XRCC3, or DNA-PK were selectively more sensitive to combined AZD7762 and gemcitabine. Checkpoint abrogation by AZD7762 also caused premature mitosis in gemcitabine-treated cells arrested in G1/early S-phase. Prevention of premature mitotic entry via Cdk1 siRNA knockdown suppressed apoptosis. These results demonstrate that chemosensitization of gemcitabine by Chk1 inhibition results from at least three cellular events namely activation of origin firing, destabilization of stalled replication forks, and entry of cells with damaged DNA into lethal mitosis. Additionally, the current study indicates that the combination of Chk1 inhibitor and gemcitabine may be particularly effective in targeting tumors with specific DNA repair defects.  相似文献   

9.
Aurora kinase B (AURKB) is critical to the process of mitosis, aiding in chromosome condensation by phosphorylating histone H3. We investigated the effects of AZD1152, an AURKB inhibitor, on radiosensitivity of androgen-insensitive prostate cancer cells. The goal of this study was to test whether AZD1152 increases the susceptibility of hormone-refractory prostate cancer cells to radiation-induced DNA damage and to determine the conditions of AZD1152 treatment that maximize radiosensitization. PC3 and DU145 cells were treated with various AZD1152 doses for various durations to elucidate the conditions that yielded maximal increases in G(2)/M-phase and polyploid cells. To assess DNA damage, γ-H2AX phosphorylation was quantified for cells grown under radiosensitizing conditions and subjected to either no radiation or 5 Gy radiation. Radiosensitivity was determined by clonogenic assays. Cell cycle effects in both cell lines were maximized by treatment with 60 nM AZD1152 for 48 h. AZD1152-treated cells exhibited significantly increased DNA damage 30 min postirradiation (PC3: 100% compared to 68%, P = 0.035; DU145: 100% compared to 69%, P = 0.034), with additional DNA damage 6 h postirradiation (PC3: 85% compared to 15%, P = 0.002; DU145: 67% compared to 21%, P = 0.012). Radiosensitivity was increased in both cell lines, with dose enhancement ratios of 1.53 for PC3 cells (P = 0.017) and 1.71 for DU145 cells (P = 0.02). This study identifies the optimal AZD1152 treatment conditions to maximize the radiosensitization of PC3 and DU145 cells. These results suggest a major role for DNA damage and impairment of DNA repair mechanisms in AZD1152-induced radiosensitization of prostate cancer cells.  相似文献   

10.
11.
12.
Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC) cell lines resistant to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR.  相似文献   

13.
Replication stress impedes DNA polymerase progression causing activation of the ataxia telangiectasia and Rad3-related signaling pathway, which promotes the intra-S phase checkpoint activity through phosphorylation of checkpoint kinase 1 (Chk1). Chk1 suppresses replication origin firing, in part, by disrupting the interaction between the preinitiation complex components Treslin and TopBP1, an interaction that is mediated by TopBP1 BRCT domain-binding to two cyclin-dependent kinase (CDK) phosphorylation sites, T968 and S1000, in Treslin. Two nonexclusive models for how Chk1 regulates the Treslin–TopBP1 interaction have been proposed in the literature: in one model, these proteins dissociate due to a Chk1-induced decrease in CDK activity that reduces phosphorylation of the Treslin sites that bind TopBP1 and in the second model, Chk1 directly phosphorylates Treslin, resulting in dissociation of TopBP1. However, these models have not been formally examined. We show here that Treslin T968 phosphorylation was decreased in a Chk1-dependent manner, while Treslin S1000 phosphorylation was unchanged, demonstrating that T968 and S1000 are differentially regulated. However, CDK2-mediated phosphorylation alone did not fully account for Chk1 regulation of the Treslin–TopBP1 interaction. We also identified additional Chk1 phosphorylation sites on Treslin that contributed to disruption of the Treslin–TopBP1 interaction, including S1114. Finally, we showed that both of the proposed mechanisms regulate origin firing in cancer cell line models undergoing replication stress, with the relative roles of each mechanism varying among cell lines. This study demonstrates that Chk1 regulates Treslin through multiple mechanisms to promote efficient dissociation of Treslin and TopBP1 and furthers our understanding of Treslin regulation during the intra-S phase checkpoint.  相似文献   

14.
AZD6244 and MK2206 are targeted small-molecule drugs that inhibit MEK and AKT respectively. The efficacy of this combination in lung cancer is unknown. Our previous work showed the importance of activated AKT in mediating resistance of non-small cell lung cancer (NSCLC) to AZD6244. Thus we hypothesized that dual inhibition of both downstream MEK and AKT pathways would induce synergistic antitumor activity. In this study, we evaluated the efficacy of AZD6244 and MK2206 individually on a large panel of lung cancer cell lines. Then, we treated 28 human lung cancer cell lines with a combination of AZD6244 and MK2206 at clinically applicable drug molar ratios. The AZD6244-MK2206 combination therapy resulted in a synergistic effect on inhibition of lung cancer cell growth compared to the results of single drug treatment alone. MK2206 enhanced AZD6244-induced Bim overexpression and apoptosis in A549 and H157 cells. When we tested the combination of AZD6244 and MK2206 at ratios of 8∶1, 4∶1, 2∶1, and 1∶8, we found that the synergistic effect of the combination therapy was ratio-dependent. At ratios of 8∶1, 4∶1, and 2∶1, the drug combination consistently demonstrated synergy, whereas decreasing the ratio to 1∶8 resulted in a loss of synergy and produced an additive or antagonistic effect in most cell lines. Furthermore, the AZD6244-MK2206 combination therapy showed synergy in the suppression of A549 and H157 xenograft tumor growth and increased mean animal survival time. The AZD6244-MK2206 combination therapy resulted in effective inhibition of both p-ERK and p-AKT expression in tumor tissue. In addition, a significant increase of apoptosis was detected in tumor tissue from mice treated with AZD6244-MK2206 compared with that from the single agent treated mice. Our study suggests that the combination of AZD6244 and MK2206 has a significant synergistic effect on tumor growth in vitro and in vivo and leads to increased survival rates in mice bearing highly aggressive human lung tumors.  相似文献   

15.
Targeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors. Wee1 tyrosine kinase was the most significant gene in synthetic lethality with Chk1. Treatment with non-toxic concentrations of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) confirmed the marked synergistic effect in various human cancer cell lines (breast, ovarian, colon, prostate), independently of the p53 status. Detailed molecular analysis showed that the combination caused cancer cells to undergo premature mitosis before the end of DNA replication, with damaged DNA leading to cell death partly by apoptosis. In vivo treatment of mice bearing OVCAR-5 xenografts with the combination of Chk1 and Wee1 inhibitors led to greater tumor growth inhibition than with the inhibitors used as single agents with no toxicity. These data provide a strong rationale for the clinical investigation of the combination of a Chk1 and a Wee1 inhibitor.  相似文献   

16.
Nicotine is a major carcinogen in cigarettes, which can enhance cell proliferation and metastasis and increase the chemoresistance of cancer cells. Our previous data found that nicotine promotes cell survival in lung cancer by affecting the expression of antiapoptotic protein Mcl-1, suggesting that the Mcl-1 may be a therapeutic target for patients with lung cancer. In this study, we found that the effects of drug resistance on nicotine-induced lung cancer cell lines were shown to influence the phosphorylation of Mcl-1. Moreover, nicotine induces Mcl-1 phosphorylation exclusively at the T163 site, which results in enhancement of the antiapoptotic activity of Mcl-1 and increased cell survival. Meanwhile, nicotine can reduce the sensitivity of H1299 cells to CDDP via enhancement of the binding of Mcl-1 to Bak, which inhibits the proapoptotic effect of Bak and ultimately leads to increased survival and drug resistance of lung cancer cells. Thus, nicotine-induced cell survival and chemoresistance may occur in a mechanism by stimulating Mcl-1 phosphorylation and its interaction with Bak, which may contribute to improving the efficacy of chemotherapy in the treatment of human lung cancer.  相似文献   

17.
Galectin-1 is a lectin recognized by galactoside-containing glycoproteins, and is involved in cancer progression and metastasis. The role of galectin-1 in radiosensitivity has not previously been investigated. Therefore, this study tests whether galectin-1 is involved in the radiosensitivity mediated by the H-Ras signaling pathway using cervical carcinoma cell lines. A knockdown of galectin-1 expression in HeLa cells decreased clonogenic survival following irradiation. The clonogenic survival increased in both HeLa and C33A cells with galectin-1 overexpression. The overexpression or knockdown of galectin-1 did not alter radiosensitivity, whereas H-Ras was silenced in both cell lines. Whereas K-Ras was knocked down, galectin-1 restored the radiosensitivity in HeLa cells and C33A cells. The knockdown of galectin-1 increased the high-dose radiation-induced cell death of HeLa cells transfected by constitutively active H-Ras. The knockdown of galectin-1 inhibited the radiation-induced phosphorylation of Raf-1 and ERK in HeLa cells. Overexpression of galectin-1 enhanced the phosphorylation of Raf-1 and ERK in C33A cells following irradiation. Galectin-1 decreased the DNA damage detected using comet assay and γ-H2AX in both cells following irradiation. These findings suggest that galectin-1 mediates radioresistance through the H-Ras-dependent pathway involved in DNA damage repair.  相似文献   

18.
Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs) have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5) with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation.  相似文献   

19.
20.
Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号