首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virus-like particles (VLPs) consist of a virus's outer shell but without the genome. Similar to the virus, VLPs are monodisperse nano-capsules which have a known morphology, maintain a high degree of symmetry, and can be engineered to encapsidate the desired cargo. VLPs are of great interest for vaccination, drug/gene delivery, imaging, sensing, and material science applications. Here we demonstrate the ability to control the disulfide bond formation in VLPs by directly controlling the redox potential during or after production and assembly of VLPs. The open cell-free protein synthesis environment, which has been reported to produce VLPs at yields comparable or greater than traditional in vivo technologies, was employed. Optimal conditions for disulfide bond formation were found to be VLP dependent, and a cooperative effect in the formation of such bonds was observed.  相似文献   

2.
To investigate the role of disulfide bonds in the capsid structure, a recombinant JC virus-like particle (VLP) was used. The major capsid protein, VP1, of the JC virus was expressed in yeast cells. The yeast-expressed VP1 was self-assembled into a VLP. Disulfide bonds were found in the VLP which caused dimeric and trimeric VP1 linkages as demonstrated by non-reducing SDS–PAGE. The VLP remained intact when disulfide bonds were reduced by dithiothreitol. The VLP without disulfide bonds could be disassembled into capsomeres by EGTA alone, but those with disulfide bonds could not be disassembled by EGTA. Capsomeres were reassembled into VLPs in the presence of calcium ions. Capsomeres formed irregular aggregations instead of VLPs when treated with diamide to reconstitute the disulfide bonds. These results indicate that disulfide bonds play an important role in maintaining the integrity of the JC VLP by protecting calcium ions from chelation.  相似文献   

3.
The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.  相似文献   

4.
A strain‐specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant‐based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high‐molecular‐weight structures. H5‐containing structures were purified and examination by transmission electron microscopy confirmed virus‐like particle (VLP) assembly. High‐performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP‐producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 µg of purified influenza H5‐VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 µg of H5‐VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.  相似文献   

5.
Saccharomyces cerevisiae antizyme (AZ) resembles mammalian AZ in its mode of synthesis by translational frameshifting and its ability to inhibit and facilitate the degradation of ornithine decarboxylase (ODC). Despite many studies on the interaction of AZ and ODC, the ODC:AZ complex has not been purified from any source and thus clear information about the stoichiometry of the complex is still lacking. In this study we have studied the yeast antizyme protein and the ODC:AZ complex. The far UV CD spectrum of the full-length antizyme shows that the yeast protein consists of 51% β-sheet, 19% α-helix, and 24% coils. Surface plasmon resonance analyses show that the association constant (KA) between yeast AZ and yeast ODC is 6 × 107 (M−1). Using purified His-tagged AZ as a binding partner, we have purified the ODC:AZ inhibitory complex. The isolated complex has no ODC activity. The molecular weight of the complex is 90 kDa, which indicates a one to one stoichiometric binding of AZ and ODC in vitro. Comparison of the circular dichroism (CD) spectra of the two individual proteins and of the ODC:AZ complex shows a change in the secondary structure in the complex.  相似文献   

6.
Virus-like particles (VLPs) are empty particles consisting of virus capsid proteins that closely resemble native virus but are devoid of the native viral nucleic acids and therefore have attracted significant attention as noninfectious vaccines. A recombinant baculovirus, vIBD-7, which encodes the structural proteins (VP2, VP3, and VP4) of infectious bursal disease virus (IBDV), produces native IBD VLPs in infected Spodoptera frugiperda insect cells. Another baculovirus, vEDLH-22, encodes VP2 that is fused with a histidine affinity-tag (VP2H) at the C-terminus. By co-infection with these two baculoviruses, hybrid VLPs with histidine tags were formed and purified by immobilized metal affinity chromatography (Hu et al., 1999). Also, we demonstrated that varying the MOI ratio of these infecting viruses altered the extent of VP2H incorporated into the particles. A dynamic mathematical model that described baculovirus infection and VLP synthesis (Hu and Bentley, 2000) was adapted here for co-infection and validated by immunofluorescence labeling. It was shown to predict the VLP composition as a dynamic function of MOI. A constraint in the VP2H content incorporated into the particles was predicted and shown by experiments. Also, the MOI ratio of both infecting viruses was shown to be the major factor influencing the composition of the hybrid particles and an important factor in determining the overall yield. ELISA results confirmed that VP2H was exhibited to a varied extent on the outer surface of the particles. This model provides insight on the use of virus co-infection in virus-mediated recombinant protein expression systems and aids in the optimization of chimeric VLP synthesis.  相似文献   

7.

Background

Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine.

Methodology

The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM).

Principal Findings

SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images – confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing.

Significance

Together, the methods presented here comprise a novel suite of non-intrusive VLP structural and functional characterization tools for recombinant vaccines. Key VLP structural features were defined and epitope-specific antigenicity was quantified while preserving epitope integrity and particle morphology. These tools should facilitate the development of other VLP-based vaccines.  相似文献   

8.
9.
Virus-like particles (VLPs) structurally mimic the viral capsid and have therefore been extensively, and quite successfully, used as vaccine and viral serology reagents. The ability of VLPs to include nucleic acids and small molecules has also made them novel vessels for gene and drug delivery. The regular, repetitive surface of VLPs has been exploited as a template for nanoscale synthesis. Recent progress has been made in the development of several virus models.  相似文献   

10.
Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2–6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6–6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0–7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an elevated pH range may also have applications for other pH-sensitive protein or VLP targets.  相似文献   

11.
The vesivirus feline calicivirus (FCV) is a positive strand RNA virus encapsidated by an icosahedral T=3 shell formed by the viral VP1 protein. Upon its expression in the insect cell - baculovirus system in the context of vaccine development, two types of virus-like particles (VLPs) were formed, a majority built of 60 subunits (T=1) and a minority probably built of 180 subunits (T=3). The structure of the small particles was determined by x-ray crystallography at 0.8 nm resolution helped by cryo-electron microscopy in order to understand their formation. Cubic crystals belonged to space group P213. Their self-rotation function showed the presence of an octahedral pseudo-symmetry similar to the one described previously by Agerbandje and co-workers for human parvovirus VLPs. The crystal structure could be solved starting from the published VP1 structure in the context of the T=3 viral capsid. In contrast to viral capsids, where the capsomers are interlocked by the exchange of the N-terminal arm (NTA) domain, this domain is disordered in the T=1 capsid of the VLPs. Furthermore it is prone to proteolytic cleavage. The relative orientation of P (protrusion) and S (shell) domains is alerted so as to fit VP1 to the smaller T=1 particle whereas the intermolecular contacts around 2-fold, 3-fold and 5-fold axes are conserved. By consequence the surface of the VLP is very similar compared to the viral capsid and suggests a similar antigenicity. The knowledge of the structure of the VLPs will help to improve their stability, in respect to a use for vaccination.  相似文献   

12.
We present a cell-free protein synthesis (CFPS) platform and a one-step, direct conjugation scheme for producing virus-like particle (VLP) assemblies that display multiple ligands including proteins, nucleic acids, and other molecules. Using a global methionine replacement approach, we produced bacteriophage MS2 and bacteriophage Qβ VLPs with surface-exposed methionine analogues (azidohomoalanine and homopropargylglycine) containing azide and alkyne side chains. CFPS enabled the production of VLPs with yields of ~ 300 μg/mL and with 85% incorporation of methionine analogues without requiring a methionine auxotrophic production host. We then directly conjugated azide- and alkyne-containing proteins (including an antibody fragment and the granulocyte-macrophage colony stimulating factor, or GM-CSF), nucleic acids and poly(ethylene glycol) chains to the VLP surface using Cu(I) catalyzed click chemistry. The GM-CSF protein, after conjugation to VLPs, was shown to partially retain its ability to stimulate the proliferation of cells. Conjugation of GM-CSF to VLPs resulted in a 3-5-fold reduction in its bioactivity. The direct attachment scheme facilitated conjugation of three different ligands to the VLPs in a single step, and enabled control of the relative ratios and surface abundance of the attached species. This platform can be used for the production of novel VLP bioconjugates for use as drug delivery vehicles, diagnostics, and vaccines.  相似文献   

13.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

14.
Inserting foreign epitopes to hepatitis B core (HBc) virus‐like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost‐effective purification process was developed for two chimeric HBc VLPs displaying Epstein–Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core‐HBc was found to be less stable in water environment compared with EBNA1‐HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α‐helix of HCV core‐HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost‐effective purification approach.  相似文献   

15.
The single-coat protein (CP) of bacteriophage Qβ self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.  相似文献   

16.
Hepatitis B virus core antigen (HBc) has recently been used as carriers to develop recombinant vaccines. However, not virus-like particles (VLPs) but inactive inclusion bodies are often formed for the chimeric proteins when expressed in Escherichia coli. A novel method for in vitro assembly of chimeric HBc-MAGE3 II from inclusion bodies to VLPs was established in this study. The method utilized 2-methyl-2, 4-pentanediol (MPD), an amphipathic di-alcohol, to dissociate sodium dodecyl sulfate (SDS) from the solubilized chimeric protein to initiate VLP assembly. The HBc-MAGE3 II could assemble into VLPs only when the molar ratio of SDS/protein subunit was less than 0.14. After removing SDS/MPD by desalting and further purification, VLPs with similar morphology to the natural virus were obtained. This method could be used for preparation of other VLPs expressed as inclusion bodies.  相似文献   

17.
The L1 major capsid protein of human papillomavirus (HPV) type 11, a 55-kDa polypeptide, forms particulate structures resembling native virus with an average particle diameter of 50-60 nm when expressed in the yeast Saccharomyces cerevisiae. We show in this report that these virus-like particles (VLPs) interact with heparin and with cell-surface glycosaminoglycans (GAGs) resembling heparin on keratinocytes and Chinese hamster ovary cells. The binding of VLPs to heparin is shown to exhibit an affinity comparable to that of other identified heparin-binding proteins. Immobilized heparin chromatography and surface plasmon resonance were used to show that this interaction can be specifically inhibited by free heparin and dextran sulfate and that the effectiveness of the inhibitor is related to its molecular weight and charge density. Sequence comparison of nine human L1 types revealed a conserved region of the carboxyl terminus containing clustered basic amino acids that bear resemblance to proposed heparin-binding motifs in unrelated proteins. Specific enzymatic cleavage of this region eliminated binding to both immobilized heparin and human keratinocyte (HaCaT) cells. Removal of heparan sulfate GAGs on keratinocytes by treatment with heparinase or heparitinase resulted in an 80-90% reduction of VLP binding, whereas treatment of cells with laminin, a substrate for alpha6 integrin receptors, provided minimal inhibition. Cells treated with chlorate or substituted beta-D-xylosides, resulting in undersulfation or secretion of GAG chains, also showed a reduced affinity for VLPs. Similarly, binding of VLPs to a Chinese hamster ovary cell mutant deficient in GAG synthesis was shown to be only 10% that observed for wild type cells. This report establishes for the first time that the carboxyl-terminal portion of HPV L1 interacts with heparin, and that this region appears to be crucial for interaction with the cell surface.  相似文献   

18.
Camptothecin (CPT) is an anti-tumor natural product that forms a ternary complex with topoisomerase I (top I) and DNA (CPT-top I-DNA). In this study, we identified the direct interaction between CPT and human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) using the T7 phage display technology. On an avidin-agarose bead pull down assay, hnRNP A1 protein was selectively pulled down in the presence of C20-biotinylated CPT derivative (CPT-20-B) both in vitro and in vivo. The interaction was also confirmed by an analysis on a quartz-crystal microbalance (QCM) device, yielding a KD value of 82.7 nM. A surface plasmon resonance (SPR) analysis revealed that CPT inhibits the binding of hnRNP A1 to top I (KD: 260 nM) in a non-competitive manner. Moreover, an in vivo drug evaluation assay using Drosophila melanogaster showed that the knockout of the hnRNP A1 homolog Hrb87F gene showed high susceptibility against 5–50 μM of CPT as compared to a wild-type strain. Such susceptibility was specific for CPT and not observed after treatment with other cytotoxic drugs. Collectively, our data suggests that CPT directly binds to hnRNP A1 and non-competitively inhibits the hnRNP A1/top I interaction in vivo. The knockout strain loses the hnRNP A1 homolog as a both CPT-binding partner and naïve brakes of top I, which enhances the formation of the CPT-top I-DNA ternary complexes and subsequently sensitizes the growth inhibitory effect of CPT in D. melanogaster.  相似文献   

19.
Kim HJ  Lim SJ  Kwag HL  Kim HJ 《PloS one》2012,7(4):e35893
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.  相似文献   

20.
To investigate the factors leading to broadening of the recombinant hepatitis B surface antigen (HBsAg) peak in size-exclusion chromatography, the HBsAg particles eluting in different regions of the peak were subjected here to electrophoretic analysis. In nonreduced samples, the 24-kD band corresponding to the S monomer was detected when excessively large amounts of HBsAg were loaded onto the gel. Hence, some monomers are not disulfide-crosslinked in assembled particles. On the other hand, the results of alkylation experiments indicated the presence of free sulfhydryl group(s) in a little portion of freshly-purified HBsAg which was retarded on the size-exclusion chromatographic column and had significant antigenicity. This fraction of HBsAg was shown to be oligomeric and capable of spontaneous assembly into higher-order structures during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号