首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular nucleotides and their metabolites activate ionotropic P2X and metabotropic P2Y receptors on the surface of various types of cells. Here, we investigated the involvement of P2X and P2Y receptor-mediated signaling in TCR-dependent T cell activation. Murine T cells were activated by stimulation of TCR, and both CD25 expression and interleukin (IL)-2 production were observed in activated T cells. Ecto-nucleotidase apyrase and P2Y6 antagonist MRS2578 significantly blocked the increases of both CD25 expression and IL-2 production, and P2X7 antagonists A438079 and oxidized ATP inhibited IL-2 production rather than CD25 expression, suggesting the involvement of P2Y6 and P2X7 receptors in different processes of T cell activation. MRS2578 also blocked TCR-dependent elevation of cytosolic Ca2+ in T cells. The P2X7 and P2Y6 receptors were expressed in murine CD4 T cells. In conclusion, our results indicate that activation of P2Y6 and P2X7 receptors contributes to T cell activation via TCR.  相似文献   

2.
Mast cell degranulation triggers hypersensitivity reactions at the body–environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA''s enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA''s enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.  相似文献   

3.
Primary lens epithelial cell (LEC) cultures derived from newborn (P0) and one-month-old (P30) mouse lenses were used to study GABA (gamma-aminobutyric acid) signaling expression and its effect on the intracellular Ca2+ ([Ca2+]i) level. We have found that these cultures express specific cellular markers for lens epithelial and fiber cells, all components of the functional GABA signaling pathway and GABA, thus recapitulating the developmental program of the ocular lens. Activation of both GABA-A and GABA-B receptors (GABAAR and GABABR) with the specific agonists muscimol and baclofen, respectively induces [Ca2+]i transients that could be blocked by the specific antagonists bicuculline and CGP55845 and were dependent on extracellular Ca2+. Bicuculline did not change the GABA-evoked Ca2+ responses in Ca2-containing buffers, but suppressed them significantly in Ca2+-free buffers suggesting the two receptors couple to convergent Ca2+ mobilization mechanisms with different extracellular Ca2+ sensitivity. Prolonged activation of GABABR induced wave propagation of the Ca2+ signal and persistent oscillations. The number of cells reacting to GABA or GABA + bicuculline in P30 mouse LEC cultures expressing predominantly the synaptic type GABAAR did not differ significantly from the number of reacting cells in P0 mouse LEC cultures. The GABA-induced Ca2+ transients in P30 (but not P0) mouse LEC could be entirely suppressed by co-application of bicuculline and CGP55845. The GABA-mediated Ca2+ signaling may be involved in a variety of Ca2+-dependent cellular processes during lens growth and epithelial cell differentiation.  相似文献   

4.
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4+CD25+ regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4+CD25+Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4+CD25+Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4+CD25+Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4+CD25+Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.  相似文献   

5.
Patients with chronic HBV infection show poor immune response to HBV-specific CD8+ T cells. Several studies demonstrate that regulatory T cells (Treg) and dendritic cells (DC) are important to maintain peripheral immune tolerance. In this study, we investigated the effects of CD4+CD25+Treg and/or the adherent cells (AC) on the proliferation of HBc18-27-specific CD8+ T cells (c18-27-CD8Ts) in response to in vitro stimulation. The frequency of c18-27-CD8Ts in four different mixed leukocyte reactions (MLRs) were analyzed using an HLA-A2-HBc18-27 tetramer. The data indicated that the median percentage of c18-27-CD8Ts in four different MLRs were significant difference in patients with chronic HBV infection. Our results showed that Treg and/or AC might suppress the frequency of HBc18-27-specific CD8+ T cell proliferation in response to in vitro stimulation in chronic HBV patients, and AC might be more effective than Treg.  相似文献   

6.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

7.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

8.
Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A2A and A3 receptor expression was observed in the arterial wall and A2A-immunoreactivity was identified in the adventitia–media junction and endothelium. A1 and A2B receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A2A antagonist, reduced NECA relaxations that were not modified by A1, A2B, and A3 receptor antagonists. Neuronal voltage-gated Ca2+ channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IKCa)- and small (SKCa)-conductance Ca2+-activated K+ channels. Inhibition of cyclooxygenase (COX), large-conductance Ca2+-activated-, ATP-dependent-, and voltage-gated-K+ channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A2A purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IKCa and SKCa channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.  相似文献   

9.
As most infections by the helminth parasite elicit the recruitment of CD4+CD25+Foxp3+ T (Treg) cells, many scientists have suggested that these cells could be used for the treatment of immune-mediated inflammation and associated diseases. In order to investigate the distribution and alteration of activated Treg cells, we compared the expression levels of Treg cell activation markers in the ileum and gastrocnemius tissues 1, 2, and 4 weeks after infection. The number of Treg cells was monitored using GFP-coded Foxp3 transgenic mice. In mice at 1 week after Trichinella spiralis infection, the number of activated Treg cells was higher than in the control group. In mice at 2 weeks after infection, there was a significant increase in the number of cells expressing Foxp3 and CTLA-4 when compared to the control group and mice at 1 week after infection. At 4 weeks after infection, T. spiralis was easily identifiable in nurse cells in mouse muscles. In the intestine, the expression of Gzmb and Klrg1 decreased over time and that of Capg remained unchanged for the first and second week, then decreased in the 4th week. However, in the muscles, the expression of most chemokine genes was increased due to T. spiralis infection, in particular the expression levels of Gzmb, OX40, and CTLA-4 increased until week 4. In addition, increased gene expression of all chemokine receptors in muscle, CXCR3, CCR4, CCR5, CCR9, and CCR10, was observed up until the 4th week. In conclusion, various chemokine receptors showed increased expressions combined with recruitment of Treg cells in the muscle tissue.  相似文献   

10.
Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1+CD31 mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1+CD31 cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1+CD31 cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1+CD31 cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1+CD31 cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9410-y) contains supplementary material, which is available to authorized users.  相似文献   

11.
Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5′-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5′-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca2+]i) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca2+]i transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca2+]i transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca2+]i response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca2+]i transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9468-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
Objective  We compared the immune system state in metastatic tumour draining lymph nodes (mTDLN) and metastasis free TDLN (mfTDLN) in 53 early stage cervical cancer patients to assess whether the presence of metastatic tumour cells worsen the balance between an efficacious anti-tumour and a tolerogenic microenvironment. Methods  The immune system state was measured by immunophenotypic and functional assessment of suppressor and effector immune cell subsets. Results  Compared to mfTDLN, mTDLN were significantly enriched in CD4+Foxp3+ regulatory T cells (Treg), which, in addition, exhibited an activated phenotype (HLA-DR+ and CD69+). Treg in mTDLN were also significantly enriched in neuropilin-1 (Nrp1) expressing cells, a subset particularly potent in dampening T cell responses. mTDLN tended to be enriched in a population of CD8+Foxp3+T cells (operationally defined as CD8+Treg) that showed a suppressor potency similar to Treg under the same experimental conditions. Plasmacytoid dendritic cells (pDC) and myeloid DC (mDC) generally show distinct roles in inducing T cell tolerance and activation, respectively. In line with the excess of suppressor T cells, the ratio pDC to mDC was significantly increased in mTDLN. Immunohistochemical testing showed that metastatic tumour cells produced the vascular endothelial growth factor, a natural ligand for Nrp1 expressed on the cell surface of Nrp1+Treg and pDC, and therefore a potential mediator by which tumour cells foster immune privilege in mTDLN. Consistent with the overall tolerogenic profile, mTDLN showed a significant Tc2 polarisation and tended to contain lower numbers of CD45RA+CD27 effector memory CD8+T cells. Conclusions  The increased recruitment of suppressor type cells concomitant with the scarcity of cytotoxic type cells suggests that in mTDLN the presence of tumour cells could tip the balance against anti-tumour immune response facilitating the survival of metastatic tumour cells and possibly contributing to systemic tolerance.  相似文献   

13.
Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25CD4+ effector (Teff) and CD25+CD4+ regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4+ T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4+ T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.  相似文献   

14.
In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) 2 mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) 3 cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8+ T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity.  相似文献   

15.
The physiological role of the thromboxane A2 (TXA2) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA2 analogue. In the present study, we examined the detailed mechanisms of TXA2 receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of Gα12/13 pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na+/H+-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [3H]H2O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA2 receptor mediates water influx through aquaporins in astrocytoma cells via TXA2 receptor-mediated activation of Gα12/13, Rho A, Rho kinase and Na+/H+-exchanger.  相似文献   

16.
Although CD4+CD25+ Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.  相似文献   

17.
D1- and D2-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A1-type receptors are located in both neuron classes, and adenosine A2A-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca2+-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D1-type receptors increase, while D2-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca2+-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A1- and A2A-receptors have not been compared observing their actions on Ca2+-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca2+-currents by A1-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A1- and A2A-receptors. We demonstrate that A1-type receptors reduced Ca2+-currents in all SPNs tested. However, A2A-type receptors enhanced Ca2+-currents only in half tested neurons. Intriguingly, to observe the actions of A2A-type receptors, occupation of A1-type receptors had to occur first. However, A1-receptors decreased CaV2 Ca2+-currents, while A2A-type receptors enhanced current through CaV1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.  相似文献   

18.
The effects of standard adenosine receptor (AR) agonists and antagonists on the proliferation of human T lymphocytes, unstimulated and phytohemagglutinin-stimulated human peripheral blood lymphocytes (PBL), and Jurkat T cells were investigated. Real-time PCR measurements confirmed the presence of all four AR subtypes on the investigated cells, although at different expression levels. A2A ARs were predominantly expressed in PBL and further upregulated upon stimulation, while malignant Jurkat T cells showed high expression levels of A1, A2A, and A2B ARs. Cell proliferation was measured by [3H]-thymidine incorporation assays. Several ligands, including the subtype-selective agonists CPA (A1), BAY60-6583 (A2B), and IB-MECA (A3), and the antagonists PSB-36 (A1), MSX-2 (A2A), and PSB-10 (A3) significantly inhibited cell proliferation at micromolar concentrations, which were about three orders of magnitude higher than their AR affinities. In contrast, further investigated AR ligands, including the agonists NECA (nonselective) and CGS21680 (A2A), and the antagonists preladenant (SCH-420814, A2A), PSB-1115 (A2B), and PSB-603 (A2B) showed no or only minor effects on lymphocyte proliferation. The anti-proliferative effects of the AR agonists could not be blocked by the corresponding antagonists. The non-selective AR antagonist caffeine stimulated phytohemagglutinin-activated PBL with an EC50 value of 104 μM. This is the first study to compare a complete set of commonly used AR ligands for all subtypes on lymphocyte proliferation. Our results strongly suggest that these compounds induce an inhibition of lymphocyte proliferation and cell death through AR-independent mechanisms.  相似文献   

19.
Adenosine A2B receptors of native human and rodent cell lines were investigated using [3H]PSB-298 [(8-{4-[2-(2-hydroxyethylamino)-2-oxoethoxy]phenyl}-1-propylxanthine] in radioligand binding studies. [3H]PSB-298 showed saturable and reversible binding. It exhibited a KD value of 60 ± 1 nM and limited capacity (Bmax = 3.511 fmol per milligram protein) at recombinant human adenosine A2B receptors expressed in human embryonic kidney cells (HEK-293). The addition of sodium chloride (100 mM) led to a threefold increase in the number of binding sites recognized by the radioligand. The curve of the agonist 5′-N-ethylcarboxamidoadenosine (NECA) was shifted to the right in the presence of NaCl, while the curve of the antagonist PSB-298 was shifted to the left, indicating that PSB-298 may be an inverse agonist at A2B receptors. Adenosine A2B receptors were shown to be the major adenosine A2 receptor subtype on the mouse neuroblastoma x rat glioma hybrid cell line NG108-15 cells. Binding studies at rat INS-1 cells (insulin secreting cell line) demonstrated that [3H]PSB-298 is a selective radioligand for adenosine A2B binding sites in this cell line.  相似文献   

20.
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca2+ concentration ([Ca2+]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca2+]c, which was completely attenuated by removing Ca2+ from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca2+]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca2+]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号