首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.  相似文献   

2.
Botulinum neurotoxin serotypes A and E (BoNT/A and BoNT/E) block neurotransmitter release by cleaving the 206-amino-acid SNARE protein, SNAP-25. For each BoNT serotype, cleavage of SNAP-25 results in the loss of intact protein, the production of an N-terminal truncated protein, and the generation of a small C-terminal peptide. Peptides that mimic the C-terminal fragments of SNAP-25 following BoNT/A or BoNT/E cleavage were shown to depress transmitter release in bovine chromaffin cells and in Aplysia buccal ganglion cells. Similarly, the N-terminal–truncated SNAP-25 resulting from BoNT/A or BoNT/E cleavage has been found to inhibit transmitter exocytosis in various systems. With one exception, however, the inhibitory action of truncated SNAP-25 has not been demonstrated at a well-defined cholinergic synapse. The goal of the current study was to determine the level of inhibition of neurotransmitter release by N-terminal BoNT/A- or BoNT/E-truncated SNAP-25 in two different neuronal systems: cholinergically coupled Aplysia neurons and rat hippocampal cell cultures. Both truncated SNAP-25 products inhibited depolarization-dependent glutamate release from hippocampal cultures and depressed synaptic transmission in Aplysia buccal ganglion cells. These results suggest that truncated SNAP-25 can compete with endogenous SNAP-25 for binding with other SNARE proteins involved in transmitter release, thus inhibiting neurotransmitter exocytosis.  相似文献   

3.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.  相似文献   

4.
Seven types (A-G) of botulinum neurotoxin (BoNT) target peripheral cholinergic neurons where they selectively proteolyze SNAP-25 (BoNT/A, BoNT/C1, and BoNT/E), syntaxin1 (BoNT/C1), and synaptobrevin (BoNT/B, BoNT/D, BoNT/F, and BoNT/G), SNARE proteins responsible for transmitter release, to cause neuromuscular paralysis but of different durations. BoNT/A paralysis lasts longest (4-6 months) in humans, hence its widespread clinical use for the treatment of dystonias. Molecular mechanisms underlying these distinct inhibitory patterns were deciphered in rat cerebellar neurons by quantifying the half-life of the effect of each toxin, the speed of replenishment of their substrates, and the degradation of the cleaved products, experiments not readily feasible at motor nerve endings. Correlation of target cleavage with blockade of transmitter release yielded half-lives of inhibition for BoNT/A, BoNT/C1, BoNT/B, BoNT/F, and BoNT/E (31, 25, approximately 10, approximately 2, and approximately 0.8 days, respectively), equivalent to the neuromuscular paralysis times found in mice, with recovery of release coinciding with reappearance of the intact SNAREs. A limiting factor for the short neuroparalytic durations of BoNT/F and BoNT/E is the replenishment of synaptobrevin or SNAP-25, whereas pulse labeling revealed that extended inhibition by BoNT/A, BoNT/B, or BoNT/C1 results from longevity of each protease. These novel findings could aid development of new toxin therapies for patients resistant to BoNT/A and effective treatments for human botulism.  相似文献   

5.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. BoNT serotype A and serotype E cleave SNAP25 at residues 197-198 and 180-181, respectively. Unlike other zinc proteases, the BoNTs recognize extended regions of SNAP25 for cleavage. The basis for this extended substrate recognition and specificity is unclear. Saturation mutagenesis and deletion mapping identified residues 156-202 of SNAP25 as the optimal cleavage domain for BoNT/A, whereas the optimal cleavage domain for BoNT/E was shorter, comprising residues 167-186 of SNAP25. Two sub-sites were resolved within each optimal cleavage domain, which included a recognition or active site (AS) domain that contained the site of cleavage and a binding (B) domain, which contributed to substrate affinity. Within the AS domains, the P1', P3, and P5 sites of SNAP25 contributed to scissile bond cleavage by LC/A, whereas the P1' and P2 sites of SNAP25 contributed to scissile bond cleavage by LC/E. These studies provide insight into the development of strategies for small molecule inhibitors of the BoNTs.  相似文献   

6.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

7.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

8.
We have developed a new simple method to induce serotonergic neurons from embryonic stem (ES) and induced pluripotent stem cells. When ES or induced pluripotent stem cells were cultured on a thick gel layer of Matrigel, most colonies extended TuJ1-positive neurites. We found that noggin, a known antagonist of bone morphogenic protein, induces ES cells to express genes involved in serotonergic differentiation, such as Nkx2.2, Pet-1, Sonic hedgehog, tryptophan hydroxylase 2, and serotonin transporter, as well as increases high potassium-induced release of serotonin. To concentrate serotonergic neurons, ES cells carrying Pet-1-enhancer-driven enhanced green fluorescent protein were differentiated and sorted into about 80% pure cultures of serotonergic neurons. Whole cell voltage-clamp recordings showed a voltage-dependent current in dissociated neurons. This simplified method provides an alternative option for serotonergic differentiation of pluripotent stem cells and will likely contribute a deeper understanding regarding the nature of serotonergic neurons and open new therapeutic perspectives for the treatment of psychiatric disorders.  相似文献   

9.
Non-toxic derivatives of botulinum neurotoxin A (BoNT/A) have potential use as neuron-targeting delivery vehicles, and as reagents to study intracellular trafficking. We have designed and expressed an atoxic derivative of BoNT/A (BoNT/A ad) as a full-length 150 kDa molecule consisting of a 50 kDa light chain (LC) and a 100 kDa heavy chain (HC) joined by a disulfide bond and rendered atoxic through the introduction of metalloprotease-inactivating point mutations in the light chain. Studies in neuronal cultures demonstrated that BoNT/A ad cannot cleave synaptosomal-associated protein 25 (SNAP25), the substrate of wt BoNT/A, and that it effectively competes with wt BoNT/A for binding to endogenous neuronal receptors. In vitro and in vivo studies indicate accumulation of BoNT/A ad at the neuromuscular junction of the mouse diaphragm. Immunoprecipitation studies indicate that the LC of BoNT/A ad forms a complex with SNAP25 present in the neuronal cytosolic fraction, demonstrating that the atoxic LC retains the SNAP25 binding capability of the wt toxin. Toxicity of BoNT/A ad was found to be reduced approximately 100,000-fold relative to wt BoNT/A.  相似文献   

10.
Traffic of botulinum toxins A and E in excitatory and inhibitory neurons   总被引:1,自引:0,他引:1  
Botulinum neurotoxins (BoNTs), proteases specific for the SNARE proteins, are used to study the molecular machinery supporting exocytosis and are used to treat human diseases characterized by cholinergic hyperactivity. The recent extension of the use of BoNTs to central nervous system (CNS) pathologies prompted the study of their traffic in central neurons. We used fluorescent BoNT/A and BoNT/E to study the penetration, the translocation and the catalytic action of these toxins in excitatory and inhibitory neurons. We show that BoNT/A and BoNT/E, besides preferentially inhibiting synaptic vesicle recycling at glutamatergic relative to Gamma-aminobutyric acid (GABA)-ergic neurons, are more efficient in impairing the release of excitatory than inhibitory neurotransmitter from brain synaptosomes. This differential effect does not result from a defective penetration of the toxin in line with the presence of the BoNT/A receptor, synaptic vesicle protein 2 (SV2), in both types of neurons. Interestingly, exogenous expression of SNAP-25 in GABAergic neurons confers sensitivity to BoNT/A. These results indicate that the expression of the toxin substrate, and not the toxin penetration, most likely accounts for the distinct effects of the two neurotoxins at the two types of terminals and support the use of BoNTs for the therapy of CNS diseases caused by the altered activity of selected neuronal populations.  相似文献   

11.
The botulinum neurotoxins (BoNTs) are di-chain bacterial proteins responsible for the paralytic disease botulism. Following binding to the plasma membrane of cholinergic motor nerve terminals, BoNTs are internalized into an endocytic compartment. Although several endocytic pathways have been characterized in neurons, the molecular mechanism underpinning the uptake of BoNTs at the presynaptic nerve terminal is still unclear. Here, a recombinant BoNT/A heavy chain binding domain (Hc) was used to unravel the internalization pathway by fluorescence and electron microscopy. BoNT/A-Hc initially enters cultured hippocampal neurons in an activity-dependent manner into synaptic vesicles and clathrin-coated vesicles before also entering endosomal structures and multivesicular bodies. We found that inhibiting dynamin with the novel potent Dynasore analog, Dyngo-4a(TM), was sufficient to abolish BoNT/A-Hc internalization and BoNT/A-induced SNAP25 cleavage in hippocampal neurons. Dyngo-4a also interfered with BoNT/A-Hc internalization into motor nerve terminals. Furthermore, Dyngo-4a afforded protection against BoNT/A-induced paralysis at the rat hemidiaphragm. A significant delay of >30% in the onset of botulism was observed in mice injected with Dyngo-4a. Dynamin inhibition therefore provides a therapeutic avenue for the treatment of botulism and other diseases caused by pathogens sharing dynamin-dependent uptake mechanisms.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses. BoNTs consist of a toxifying light chain (LC; 50 kDa) and a binding/translocating heavy chain (HC; 100 kDa) linked through a disulfide bond. A DNA fragment encoding type A Clostridium botulinum heavy chain (BoNT/A HC) was amplified by polymerase chain reaction and cloned into an E. coli PET-15b vector. In vitro translated [35S]BoNT/A HC was identified by anti-BoNT/A polyclonal antibodies, and was used to investigate the binding of the toxin to rat synaptosomes. The binding of [35S]BoNT/A HC to synaptosomes was abolished by 500-fold excess of cold BoNT/A, and by incubation with trypsin. Treatment of BoNT/A HC with anti-BoNT/A or GT1b blocked its binding to synaptosomes. The radioactive BoNT/A HC recognized three proteins corresponding to a molecular mass of 150 (P150), 120 (P120), and 75 (P75) kDa in rat and bovine synaptosomal preparations. These results represent the first successful expression of functional full-length BoNT heavy chain.  相似文献   

13.
目的:克隆突触小体相关蛋白(SNAP25)基因,原核表达、纯化并鉴定SNAP25蛋白。方法:PCR扩增SNAP25基因,克隆至表达质粒pTIG-Trx,转化大肠杆菌BL21(DE3)感受态细胞,IPTG诱导表达,Ni2+-NTA亲和层析纯化目的蛋白,SDS-PAGE及Western印迹分析肉毒神经毒素BoNT/A轻链对该蛋白的裂解情况。结果:构建了pTIG-SNAP25表达质粒,经IPTG诱导表达,目的蛋白占全菌蛋白的26.2%,表达形式为可溶性表达,表达量达115.4mg/L,纯化后蛋白纯度达95%以上;经SDS-PAGE及Western印迹分析,SNAP25蛋白可被BoNT/A轻链特异降解。结论:克隆了SNAP25基因,在原核系统中表达、纯化并鉴定了重组SNAP25蛋白。  相似文献   

14.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

15.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting neurotransmitter-carrying vesicle fusion to the plasma membrane of peripheral neurons. Unlike other zinc proteases, BoNTs recognize extended regions of SNAP25 for cleavage; however, the molecular basis for this extended substrate recognition is unclear. Here, we define a multistep mechanism for recognition and cleavage of SNAP25 by BoNT/A. SNAP25 initially binds along the belt region of BoNT/A, which aligns the P5 residue to the S5 pocket at the periphery of the active site. Although the exact order of each step of recognition of SNAP25 by BoNT/A at the active site is not clear, the initial binding could subsequently orient the P4'-residue of SNAP25 to form a salt bridge with the S4'-residue, which opens the active site allowing the P1'-residue access to the S1'-pocket. Subsequent hydrophobic interactions between the P3 residue of SNAP25 and the S3 pocket optimize alignment of the scissile bond for cleavage. This explains how the BoNTs recognize and cleave specific coiled SNARE substrates and provides insight into the development of inhibitors to prevent botulism.  相似文献   

16.
The growth of a pluripotent embryonic stem (ES) cell population is dependent on cell survival, proliferation and self-renewal. The nucleotide ATP represents an important extracellular signalling molecule that regulates the survival of differentiated cells, however, its role is largely undefined in embryonic stem cells. Here we report a role for ATP-gated P2X7 receptors in ES cell survival. The functional expression of P2X7 receptors in undifferentiated mouse ES cells is demonstrated using a selective P2X7 antagonist and small interfering RNA knockdown of these receptors. Our data illustrate a key role for the P2X7 receptor as an essential pro-survival signal required for optimal ES cell colony growth in the presence of leukemia inhibitor factor (LIF). However, chronic exposure to exogenous ATP leads to rapid P2X7-dependent cell death via necrosis. Together, these data demonstrate a novel role for P2X7 receptors in regulation of ES cell behaviour where they can mediate either a pro-survival or pro-death signal depending on the mode of activation.  相似文献   

17.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

18.
Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.  相似文献   

19.
20.
The high toxicity of clostridial neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven botulinum neurotoxin serotypes A–G (BoNT/A–G) inhibit acetylcholine release, leading to flaccid paralysis, while tetanus neurotoxin blocks neurotransmitter release in inhibitory neurons, resulting in spastic paralysis. Uptake of BoNT/A, B, E and G requires a dual interaction with gangliosides and the synaptic vesicle (SV) proteins synaptotagmin or SV2, whereas little is known about the entry mechanisms of the remaining serotypes. Here, we demonstrate that BoNT/F as wells depends on the presence of gangliosides, by employing phrenic nerve hemidiaphragm preparations derived from mice expressing GM3, GM2, GM1 and GD1a or only GM3. Subsequent site-directed mutagenesis based on homology models identified the ganglioside binding site at a conserved location in BoNT/E and F. Using the mice phrenic nerve hemidiaphragm assay as a physiological model system, cross-competition of full-length neurotoxin binding by recombinant binding fragments, plus accelerated neurotoxin uptake upon increased electrical stimulation, indicate that BoNT/F employs SV2 as protein receptor, whereas BoNT/C and D utilise different SV receptor structures. The co-precipitation of SV2A, B and C from Triton-solubilised SVs by BoNT/F underlines this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号