首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

2.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

3.
Summary The effect of phospholipase A2 and of related agents on ouabain binding and Na,K-ATPase activity were studied in intact and detergent-treated membrane preparations of rat brain cortex and pig kidney medulla. It was found that phospholipase A2 (PLA2) may distinguish or dissociate ouabain binding complexes I (ATP+Mg+Na) and II (Pi+Mg), stimulating the former and inhibiting the latter. Procedures which break the permeability barriers of vesicular membrane preparations, such as repeated freezing-thawing, sonication or hypoosmotic shock failed to mimic the effect of PLA2, indicating that it was not acting primarily by opening the inside-out oriented vesicles. The detergent digitonin exhibited similar effects on ouabain binding in both ATP+Mg+Na and Pi+Mg media. Other detergents were ineffective.The ability of PLA2 to distinguish between ouabain binding type I and II can be manifested even in SDS-treated, purified preparations of Na,K-ATPase. The number of ATP+Mg+Na-dependent sites is unchanged, while the Pi+Mg-dependent sites are decreased in number in a manner similar to that seen in original membranes. This inhibition is completely lost in the reconstituted Na,K-ATPase system, where the ATP- as well as Pi-oriented ouabain sites are inhibited by PLA2.  相似文献   

4.
We studied the thermal dependence of amide I′ infrared absorption and fluorescence emission of Trp residues in the Na,K-ATPase of rabbit kidney. We studied the whole enzyme solubilized with detergent, the whole enzyme reconstituted in proteoliposomes and the protein fraction that remained in the lipid membrane after the trypsin digestion of the proteoliposomes. Cooperative unfolding and aggregation with increasing temperature were observed in the whole protein, whether solubilized or reconstituted, but not in the fraction remaining after trypsinization. The protein influenced the physical state of the lipid, decreasing the temperature of the gel to liquid-crystalline phase transition and the degree of cooperativity. This study provides new information for the understanding of the processes controlling the association mechanisms that are important for enzyme function in natural membranes.  相似文献   

5.
The membrane-bound cation-transporting P-type Na,K-ATPase isolated from pig kidney membranes is much more resistant towards thermal inactivation than the almost identical membrane-bound Na,K-ATPase isolated from shark rectal gland membranes. The loss of enzymatic activity is correlated well with changes in protein structure as determined using synchrotron radiation circular dichroism (SRCD) spectroscopy. The enzymatic activity is lost at a 12°C higher temperature for pig enzyme than for shark enzyme, and the major changes in protein secondary structure also occur at T(m)'s that are ~10-15°C higher for the pig than for the shark enzyme. The temperature optimum for the rate of hydrolysis of ATP is about 42°C for shark and about 57°C for pig, both of which are close to the temperatures for onset of thermal unfolding. These results suggest that the active site region may be amongst the earliest parts of the structure to unfold. Detergent-solubilized Na,K-ATPases from the two sources show the similar differences in thermal stability as the membrane-bound species, but inactivation occurs at a lower temperature for both, and may reflect the stabilizing effect of a bilayer versus a micellar environment.  相似文献   

6.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic α-subunit (four isoforms) and an ancillary β-subunit (three isoforms). Mutations in the α2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase α2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase α2-isoform.  相似文献   

7.
Cornelius F  Mahmmoud YA 《Biochemistry》2007,46(9):2371-2379
FXYD10 is a 74 amino acid small protein which regulates the activity of shark Na,K-ATPase. The lipid dependence of this regulatory interaction of FXYD10 with shark Na,K-ATPase was investigated using reconstitution into DOPC/cholesterol liposomes with or without the replacement of 20 mol % DOPC with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither in the presence nor in the absence of anionic phospholipids did protein kinase phosphorylation of native FXYD10, which relieves the inhibition, affect such cross-linking. Together, this seems to indicate that phosphorylation involves only modest structural rearrangements between the cytoplasmic domain of FXYD10 and the Na,K-ATPase A-domain.  相似文献   

8.
The effects of phospholipid acyl chain length (nc) and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal hydrophobic thickness of the lipid bilayer decreases from nc = 22 to 18 in the presence of 40 mol% cholesterol. Hydrophobic matching as well as specific interactions of cholesterol with the phosphorylation/dephosphorylation reactions is found to be important. A novel regulatory protein has been identified in Na,K-ATPase membrane preparations from the shark (phospholemmanlike protein from shark, PLMS) with significant homology to phospholemman (PLM), the major protein kinase substrate in myocardium. Both are members of the FXYD gene family. Another member of this family is the Na,K-ATPase subunit indicating that these proteins may be specific regulators of the Na,K-ATPase. A regulatory mechanism is described in which association/dissociation of PLMS with the Na,K-ATPase is governed by its phosphorylation by protein kinases.  相似文献   

9.
The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on K diss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3 effect was compatible with competitive binding of NO3 and ADP in addition to the general I-effect. K diss for E·NO3 was ∼32 mM. Analysis of Vmax/K m for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme.  相似文献   

10.
Urea interacts with the Na,K-ATPase, leading to reversible as well as irreversible inhibition of the hydrolytic activity. The enzyme purified from shark rectal glands is more sensitive to urea than Na,K-ATPase purified from pig kidney. An immediate and reversible inhibition under steady-state conditions of hydrolytic activity at 37 °C is demonstrated for the three reactions studied: the overall Na,K-ATPase activity, the Na-ATPase activity observed in the absence of K+ as well as the K+-dependent phosphatase reaction (K-pNPPase) seen in the absence of Na+. Half-maximal inhibition is seen with about 1 M urea for shark enzyme and about 2 M urea for pig enzyme. In the presence of substrates there is also an irreversible inhibition in addition to the reversible process, and we show that ATP protects against the irreversible inhibition for both the Na,K-ATPase and Na-ATPase reaction, whereas the substrate paranitrophenylphosphate leads to a slight increase in the rate of irreversible inhibition of the K-pNPPase. The rate of the irreversible inactivation in the absence of substrates is much more rapid for shark enzyme than for pig enzyme. The larger number of potentially urea-sensitive hydrogen bonds in shark enzyme compared to pig enzyme suggests that interference with the extensive hydrogen bonding network might account for the higher urea sensitivity of shark enzyme. The reversible inactivation is interpreted in terms of domain interactions and domain accessibilities using as templates the available crystal structures of Na,K-ATPase. It is suggested that a few interdomain hydrogen bonds are those mainly affected by urea during reversible inactivation.  相似文献   

11.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

12.
The Na+ and K+ dependence of the frontocortical Na,K-ATPase in Alzheimer's disease (AD) was compared with that in human control (Co) and rat AD model. In AD, the relationship between the Na/K ratio and the Na,K-ATPase activity showed noticeable left-shift with three-fold increase in the enzyme affinity for Na+ (K(0.5)=10 and 30 mM in AD and Co, respectively). The Na+ dependence of the enzyme in AD showed two different Hill coefficients (n(H)), 1.1 and 0.3, whereas the Co value of n(H) was higher (1.4). The rat AD model generated by ibotenic acid revealed a Na+ dependence similar to AD. The K+ dependence of the Na,K-ATPase showed no significant difference in AD and Co. Compared with Co, AD produced a shift in the break of the Na,K-ATPase Arrhenius plot, suggesting remarkable alterations in the enzyme lipid environment. Our findings support the hypothesis that dysfunction of the Na,K-ATPase in AD is provoked by altered Na+ dependence of the enzyme. An impairment of the pump functionality might serve as an early mechanism of AD that should be interrupted by selective pharmacological agents.  相似文献   

13.
We describe an assay for the enzyme Na/K-ATPase in intact guinea pig livers perfused through the portal vein with modified Hank’s solution. The model uses the measurement of non-radioactive rubidium ion incorporation by liver cells, both in the absence and in the presence of the specific Na/K-ATPase inhibitor ouabain, followed by a rinsing procedure with cold saline. The concentration of Rb+ in acid-digested liver lobes was measured by atomic emission spectrometry and Na/K pump activity was calculated by the difference between the incorporation of Rb+ in the absence and in the presence of ouabain. The optimal conditions for Rb+ incorporation were: perfusion flow rate, 3 ml/min per liver; perfusion time at 37 °C, 60 min; rinsing time with cold saline, 5-10 min; and concentration of ouabain, 3 mM. The calculated ouabain IC50 was 100 μM. The major advantage of this model is the possibility of testing experimental drugs affecting this enzyme in conditions close to those in the intact organ.  相似文献   

14.
15.
Very pure, detergent-solubilized Na,K-ATPase from dog or lamb kidneys has been successfully reconstituted at high protein-to-lipid weight ratios. Studies have been conducted to establish the orientation of the Na,K-ATPase molecules in the reconstituted membranes and to assess the functional activity and the conformational state of the reconstituted enzyme. Results indicate that reincorporation of the Na,K-ATPase molecules in the lipid bilayer is unidirectional and that the reconstituted enzyme retains its functional and structural integrity. Two-dimensional crystals have been induced in these preparations by vanadate ions. The arrays, with a dimeric structure in the unit cell, have a morphology similar to that of the crystals that had previously formed in the native membranes. Filtered images show that in projection, the molecule had an asymmetrical mass distribution, which at the resolution of 2.5 nm is identical to that of the earlier crystals. These sheets, although small, represent the first crystals of Na, K-ATPase to be formed by reconstitution. We expect that optimization of the reconstitution and crystallization parameters will lead to larger and better-ordered sheets, suitable for electron crystallography.  相似文献   

16.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

17.
Recently, DHSM, a minor constituent in naturally occurring SMs, was indicated to form a raft-like ordered phase more effectively than a naturally occurring form of SM because DHSM has greater potential to induce the intermolecular hydrogen bond. In order to examine the influence of the DHSM-induced hydrogen bond on the phase segregation, the thermal phase behavior of stearoyl-DHSM/DOPC binary bilayers was examined using calorimetry and fluorescence observation and compared with that of SSM/DOPC binary bilayers. Results revealed that the DHSM/DOPC bilayers undergo phase segregation between two Lα phases within a limited compositional range. On the other hand, apparent phase separation was not observed above main transition temperature in SSM/DOPC mixtures. Our monolayer measurements showed that the lipid packing of DHSM is less perturbed than that of SSM by the addition of small amount of DOPC, indicating a stronger hydrogen bond between DHSM molecules. Therefore, in DHSM/DOPC binary bilayers, DHSM molecules may locally accumulate to form a DHSM-rich domain due to a DHSM-induced hydrogen bond. On the other hand, excess accumulation of DHSM should be prevented because the difference in the curvature between DHSM and DOPC assemblies causes elastic constraint at the domain boundary between the DHSM-rich and DOPC-rich domains. Competition between the energetic advantages provided by formation of the hydrogen bond and the energetic disadvantage conferred by elastic constraints likely results in Lα/Lα phase separation within a limited compositional range.  相似文献   

18.
The sodium channel was studied in osmotically-sensitive membrane preparations from rat brain and in innervated and chronically denervated rat soleus and extensor digitorum longus muscles. These experiments were undertaken in order to define a set of parameters for sodium channel function at the subcellular level to be used as a measure of retention of channel integrity upon subsequent isolation of the channel. Various neurotoxins and drugs were employed to control the permeability of the brain membranes to 22Na and the sodium-conductance properties of the muscles. Batrachotoxin (ED50 = 0.2 μM), veratridine (ED50 = 1 μM), or grayanotoxin I (ED50 = 30 μM) stimulated 22Na uptake in brain membranes is inhibited in an apparently uncompetitive manner by the sodium channel blocking agents tetrodotoxin and saxitoxin in a simple competitive manner by Ca2+ and in a partial or allosteric competitive manner by lidocaine and procaine. This 22Na uptake assay, which can be equated to a measure of equilibrium toxin binding, shows dependence on the concentration of the membranes and is sensitive to pH, temperature, ionic strength, and the ionic composition of the media. Parallel biophysical studies on sodium channels in rat muscle show that the properties of the sodium channel are similarly affected by these agents.  相似文献   

19.
Although it was shown earlier that phosphorylation of Na,K-ATPase by cAMP-dependent protein kinase (PKA) occurs in intact cells, the purified enzyme in vitro is phosphorylated by PKA only after treatment by detergent. This is accompanied by an unfortunate side effect of the detergent that results in complete loss of Na,K-ATPase activity. To reveal the effect of Na,K-ATPase phosphorylation by PKA on the enzyme activity in vitro, the effects of different detergents and ligands on the stoichiometry of the phosphorylation and activity of Na,K-ATPase from duck salt glands (11-isoenzyme) were comparatively studied. Chaps was shown to cause the least inhibition of the enzyme. In the presence of 0.4% Chaps at 1 : 10 protein/detergent ratio in medium containing 100 mM KCl and 0.3 mM ATP, PKA phosphorylates serine residue(s) of the Na,K-ATPase with stoichiometry 0.6 mol Pi/mol of -subunit. Phosphorylation of Na,K-ATPase by PKA in the presence of the detergent inhibits the Na,K-ATPase. A correlation was found between the inclusion of Pi into the -subunit and the loss of activity of the Na,K-ATPase.  相似文献   

20.
6-Phosphofructo-1-kinase (PFK-1), a major regulatory enzyme in the glycolysis pathway, is a cytoplasmic enzyme with complicated allosteric kinetics. Here we investigate the effects of lipids on the activity of PFK from Bacillus stearothermophilus (BsPFK), to determine whether BsPFK shares any of the membrane binding or lipid binding properties reported for some mammalian PFKs. Our results show that large unilamellar vesicles (LUVs) composed of either the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or of 1:1 (mole ratio) DOPC and the fatty acid, oleic acid (OA), cause a three-fold increase in Vmax, depending on the lipid concentration and vesicle composition, but no change in Km. Further studies show lipids do not reverse the allosteric inhibitory effects of phosphoenolpyruvate (PEP) on BsPFK. SDS/PAGE studies do not show significant binding of the BsPFK tetramer to the surface of the phospholipid vesicles, suggesting that modulation of catalytic activity is due to binding of lipid monomers. By simulating the kinetics of BsPFK interaction with vesicles and lipid monomers we conclude that the change in BsPFK catalytic activity with respect to lipid concentration is consistent with monomer abstraction from vesicles rather than direct uptake of lipid monomers from solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号