首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron and citrate are essential for the metabolism of most organisms, and regulation of iron and citrate biology at both the cellular and systemic levels is critical for normal physiology and survival. Mitochondrial and cytosolic aconitases catalyze the interconversion of citrate and isocitrate, and aconitase activities are affected by iron levels, oxidative stress and by the status of the Fe–S cluster biogenesis apparatus. Assembly and disassembly of Fe–S clusters is a key process not only in regulating the enzymatic activity of mitochondrial aconitase in the citric acid cycle, but also in controlling the iron sensing and RNA binding activities of cytosolic aconitase (also known as iron regulatory protein IRP1). This review discusses the central role of aconitases in intermediary metabolism and explores how iron homeostasis and Fe–S cluster biogenesis regulate the Fe–S cluster switch and modulate intracellular citrate flux.  相似文献   

2.
The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.  相似文献   

3.
Iron regulatory protein 1 (IRP1) is regulated through the assembly/disassembly of a [4Fe-4S] cluster, which interconverts IRP1 with cytosolic aconitase. A genetic screen to isolate Saccharomyces cerevisiae strains bearing mutations in genes required for the conversion of IRP1 to c-aconitase led to the identification of a previously uncharacterized, essential gene, which we call CFD1 (cytosolic Fe-S cluster deficient). CFD1 encodes a highly conserved, putative P-loop ATPase. A non-lethal mutation of CFD1 (cfd1-1) reduced c-aconitase specific activity in IRP1-transformed yeast by >90%, although IRP1 in these cells could be readily converted to c-aconitase in vitro upon incubation with iron alone. IRP1-transformed cfd1-1 yeast lacked EPR-detectable Fe-S clusters in c-aconitase, pointing to a defect in Fe-S cluster assembly. The specific activity of another cytosolic Fe-S protein, Leu1p, was also inhibited by >90% in cfd1-1 yeast, whereas activity of mitochondrial Fe-S proteins was not inhibited. Consistent with a cytosolic site of activity, Cfd1p was localized in the cytoplasm. To our knowledge, Cfd1p is the first cytoplasmic Fe-S cluster assembly factor described in eukaryotes.  相似文献   

4.
5.
Iron and oxygen are essential but potentially toxic constituents of most organisms, and their transport is meticulously regulated both at the cellular and systemic levels. Compartmentalization may be a homeostatic mechanism for isolating these biological reactants in cells. To investigate this hypothesis, we have undertaken a genetic analysis of the interaction between iron and oxygen metabolism in Drosophila. We show that Drosophila iron regulatory protein-1 (IRP1) registers cytosolic iron and oxidative stress through its labile iron sulfur cluster by switching between cytosolic aconitase and RNA-binding functions. IRP1 is strongly activated by silencing and genetic mutation of the cytosolic superoxide dismutase (Sod1), but is unaffected by silencing of mitochondrial Sod2. Conversely, mitochondrial aconitase activity is relatively insensitive to loss of Sod1 function, but drops dramatically if Sod2 activity is impaired. This strongly suggests that the mitochondrial boundary limits the range of superoxide reactivity in vivo. We also find that exposure of adults to paraquat converts cytosolic aconitase to IRP1 but has no affect on mitochondrial aconitase, indicating that paraquat generates superoxide in the cytosol but not in mitochondria. Accordingly, we find that transgene-mediated overexpression of Sod2 neither enhances paraquat resistance in Sod1+ flies nor compensates for lack of SOD1 activity in Sod1-null mutants. We conclude that in vivo, superoxide is confined to the subcellular compartment in which it is formed, and that the mitochondrial and cytosolic SODs provide independent protection to compartment-specific protein iron-sulfur clusters against attack by superoxide generated under oxidative stress within those compartments.  相似文献   

6.
7.
Iron–sulfur (Fe–S) clusters are the oldest and most versatile inorganic cofactors that are required to sustain fundamental life processes. Bacteria have three systems of [Fe–S] cluster biogenesis, designated ISC, NIF, and SUF. In contrast, the Thermus thermophiles HB8 has only one system, formed mostly by SUF homologs that contain six proteins: SufA, SufB, SufC, SufD, SufS and SufE. The kinetics of SufC ATPase was studied using a linked enzyme assay method. In the presence of SufB, SufD or SufBD complexes, the activity of SufC was enhanced. The cysteine desulfurase activity of SufS was also stimulated by the presence of the SufBCD complex. The results obtained through enzymology revealed that aconitase activity was activated by [Fe–S] clusters reconstituted on the SufBCD complex. Consolidated results from spectral and enzymatic analysis suggest that the SufBCD complex is a novel type of Fe–S scaffold system that can assemble Fe/S clusters de novo.  相似文献   

8.
Iron regulatory proteins (IRP) are sequence-specific RNA-binding proteins that mediate iron-responsive gene regulation in animals. IRP1 is also the cytosolic isoform of aconitase (c-aconitase). This latter activity could complement a mitochondrial aconitase mutation (aco1) in Saccharomyces cerevisiae to restore glutamate prototrophy. In yeast, the c-aconitase activity of IRP1 was responsive to iron availability in the growth medium. Although IRP1 expression rescued aco1 yeast from glutamate auxotrophy, cells remained growth-limited by glutamate, displaying a slow-growth phenotype on glutamate-free media. Second site mutations conferring enhanced cytosolic aconitase-dependent (ECA) growth were recovered. Relative c-aconitase activity was increased in extracts of strains harboring these mutations. One of the ECA mutations was found to be in the gene encoding cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDP2). This mutation, an insertion of a Ty delta element into the 5' region of IDP2, markedly elevates expression of Idp2p in glucose media. Our results demonstrate the physiological significance of the aconitase activity of IRP1 and provide insight into the role of c-aconitase with respect to iron and cytoplasmic redox regulation.  相似文献   

9.
G Kispal  P Csere  C Prohl    R Lill 《The EMBO journal》1999,18(14):3981-3989
Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfurase NifS that initiates biogenesis by producing elemental sulfur. The matrix-localized protein is required for synthesis of both mitochondrial and cytosolic Fe/S proteins. The ATP-binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs an essential function only in the generation of cytosolic Fe/S proteins by mediating export of Fe/S cluster precursors synthesized by Nfs1p and other mitochondrial proteins. Assembly of cellular Fe/S clusters constitutes an indispensable biosynthetic task of mitochondria with potential relevance for an iron-storage disease and the control of cellular iron uptake.  相似文献   

10.
11.
12.
Iron regulatory proteins (IRPs) control the translation of proteins involved in iron uptake, storage and utilization by binding to specific noncoding sequences of the corresponding mRNAs known as iron-responsive elements (IREs). This strong interaction assures proper iron homeostasis in animal cells under iron shortage. Conversely, under iron-replete conditions, IRP1 binds a [4Fe-4S] cluster and functions as cytosolic aconitase. Regulation of the balance between the two IRP1 activities is complex, and it does not depend only on iron availability. Here, we report the crystal structure of human IRP1 in its aconitase form. Comparison with known structures of homologous enzymes reveals well-conserved folds and active site environments with significantly different surface shapes and charge distributions. The specific features of human IRP1 allow us to propose a tentative model of an IRP1-IRE complex that agrees with a range of previously obtained data.  相似文献   

13.
14.
Iron and oxygen (O2) are intimately associated in many well characterized patho-physiological processes. These include oxidation of the [4Fe-4S] cluster of mitochondrial aconitase and inactivation of this Krebs cycle enzyme by the superoxide anion (O2*-), a product of the one-electron of reduction O2. In contrast to the apparent toxicity of this reaction, the biological consequences of O2*- -mediated inactivation of the cytosolic counterpart of mitochondrial aconitase, commonly known as iron regulatory protein 1 (IRP1), are not clear. Apart from its ability to convert citrate to iso-citrate, IRP1 in its apo-form binds to iron-responsive elements in the untranslated regions of mRNAs coding for proteins involved in iron metabolism, to regulate their synthesis and thus control the cellular homeostasis of this metal. Here, we show that in superoxide dismutase 1 (SOD1) knock-out mice, lacking Cu,Zn-SOD, an enzyme that acts to reduce the concentration of O2*- mainly in cytosol, not only is aconitase activity of IRP1 inhibited but the level of IRP1 is also strongly decreased. Despite such an evident alteration in IRP1 status, SOD1-deficient mice display a normal iron metabolism phenotype. Our findings clearly show that under conditions of O2*- -mediated oxidative stress, IRP1 is not essential for the maintenance of iron metabolism in mammals.  相似文献   

15.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

16.
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. “Plastid-type” NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron–sulfur (Fe–S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe–S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe–S clusters to lipoyl synthase.

A pair of evolutionarily conserved proteins involved in iron–sulfur cofactor assembly have a specific role in lipoate biosynthesis for mitochondrial dehydrogenases.  相似文献   

17.
F Foury 《FEBS letters》1999,456(2):281-284
Deletion of the yeast frataxin homologue, YFH1, elicits accumulation of iron in mitochondria and mitochondrial defects. We report here that in the presence of an iron chelator in the culture medium, the concentration of iron in mitochondria is the same in wild-type and YFH1 deletant strains. Under these conditions, the activity of the respiratory complexes is restored. However, the activity of the mitochondrial aconitase, a 4Fe-4S cluster-containing protein, remains low. The frataxin family bears homology to a bacterial protein family which confers resistance to tellurium, a metal closely related to sulfur. Yfh1p might control the synthesis of iron-sulfur clusters in mitochondria.  相似文献   

18.
Iron?sulfur (Fe-S) clusters have been shown to play important roles in various cellular physiological process. Iron?sulfur cluster assembly 2 (ISCA2) is a vital component of the [4Fe-4S] cluster assembly machine. Several studies have shown that ISCA2 is highly expressed during erythroid differentiation. However, the role and specific regulatory mechanisms of ISCA2 in erythroid differentiation and erythroid cell growth remain unclear. RNA interference was used to deplete ISCA2 expression in human erythroid leukemia K562 cells. The proliferation, apoptosis, and erythroid differentiation ability of the cells were assessed. We show that knockdown of ISCA2 has profound effects on [4Fe-4S] cluster formation, diminishing mitochondrial respiratory chain complexes, leading to reactive oxygen species (ROS) accumulation and mitochondrial damage, inhibiting cell proliferation. Excessive ROS can inhibit the activity of cytoplasmic aconitase (ACO1) and promote ACO1, a bifunctional protein, to perform its iron-regulating protein 1(IRP1) function, thus inhibiting the expression of 5′-aminolevulinate synthase 2 (ALAS2), which is a key enzyme in heme synthesis. Deficiency of ISCA2 results in the accumulation of iron divalent. In addition, the combination of excessive ferrous iron and ROS may lead to damage of the ACO1 cluster and higher IRP1 function. In brief, ISCA2 deficiency inhibits heme synthesis and erythroid differentiation by double indirect downregulation of ALAS2 expression. We conclude that ISCA2 is essential for normal functioning of mitochondria, and is necessary for erythroid differentiation and cell proliferation.  相似文献   

19.
Fe–S clusters are ancient, ubiquitous and highly essential prosthetic groups for numerous fundamental processes of life. The biogenesis of Fe–S clusters is a multistep process including iron acquisition, sulfur mobilization, and cluster formation. Extensive studies have provided deep insights into the mechanism of the latter two assembly steps. However, the mechanism of iron utilization during chloroplast Fe–S cluster biogenesis is still unknown. Here we identified two Arabidopsis DnaJ proteins, DJA6 and DJA5, that can bind iron through their conserved cysteine residues and facilitate iron incorporation into Fe–S clusters by interactions with the SUF (sulfur utilization factor) apparatus through their J domain. Loss of these two proteins causes severe defects in the accumulation of chloroplast Fe–S proteins, a dysfunction of photosynthesis, and a significant intracellular iron overload. Evolutionary analyses revealed that DJA6 and DJA5 are highly conserved in photosynthetic organisms ranging from cyanobacteria to higher plants and share a strong evolutionary relationship with SUFE1, SUFC, and SUFD throughout the green lineage. Thus, our work uncovers a conserved mechanism of iron utilization for chloroplast Fe–S cluster biogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号