首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that in macrophages proper operation of the survival pathways phosphatidylinositol-3-kinase (PI3K)/AKT and nuclear factor kappa B (NFkB) has an obligatory requirement for constitutive, non-regulated Ca2+ influx. In the present work we examined if Transient Receptor Potential Canonical 3 (TRPC3), a member of the TRPC family of Ca2+-permeable cation channels, contributes to the constitutive Ca2+ influx that supports macrophage survival. We used bone marrow-derived macrophages obtained from TRPC3−/− mice to determine the activation status of survival signaling pathways, apoptosis and their efferocytic properties. Treatment of TRPC3+/+ macrophages with the pro-apoptotic cytokine TNFα induced time-dependent phosphorylation of IκBα, AKT and BAD, and this was drastically reduced in TRPC3−/− macrophages. Compared to TRPC3+/+ cells TRPC3−/− macrophages exhibited reduced constitutive cation influx, increased apoptosis and impaired efferocytosis. The present findings suggest that macrophage TRPC3, presumably through its constitutive function, contributes to survival signaling and efferocytic properties.  相似文献   

2.
3.
Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved endothelium-dependent hyperpolarizaiton through endothelial potassium channels. Jujuboside B is a natural compound with new pharmacological effects on improving endothelial dysfunction and treating vascular diseases.  相似文献   

4.
There is considerable evidence indicating that intracellular Ca2+ participates as a second messenger in TLR4-dependent signaling. However, how intracellular free Ca2+ concentrations ([Ca2+]i) is increased in response to LPS and how they affect cytokine production are poorly understood. Here we examined the role of transient receptor potential (TRP), a major Ca2+ permeation pathway in non-excitable cells, in the LPS-induced cytokine production in macrophages. Pharmacologic experiments suggested that TRPV family members, but neither TRPC nor TRPM family members, are involved in the LPS-induced TNFα and IL-6 production in RAW264 macrophages. RT-PCR and immunoblot analyses showed that TRPV2 is the sole member of TRPV family expressed in macrophages. ShRNA against TRPV2 inhibited the LPS-induced TNFα and IL-6 production as well as IκBα degradation. Experiments using BAPTA/AM and EGTA, and Ca2+ imaging suggested that the LPS-induced increase in [Ca2+]i involves both the TRPV2-mediated intracellular and extracellular Ca2+ mobilizations. BAPTA/AM abolished LPS-induced TNFα and IL-6 production, while EGTA only partially suppressed LPS-induced IL-6 production, but not TNFα production. These data indicate that TRPV2 is involved in the LPS-induced Ca2+ mobilization from intracellular Ca2+ store and extracellular Ca2+. In addition to Ca2+ mobilization through the IP3-receptor, TRPV2-mediated intracellular Ca2+ mobilization is involved in NFκB-dependent TNFα and IL-6 expression, while extracellular Ca2+ entry is involved in NFκB-independent IL-6 production.  相似文献   

5.
Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca2+, which could be mediated by inositol trisphosphate (IP3)-dependent store-operated Ca2+ channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 μM of histamine, both store-operated Ca2+ entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between −80 bp and −250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions.  相似文献   

6.
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation.  相似文献   

7.
8.
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts.  相似文献   

9.
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.  相似文献   

10.
In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-d-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors.  相似文献   

11.
12.
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-κB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-κB-α (IκB-α) was decreased and the nuclear translocation of NF-κB was increased. The thapsigargin-induced activation of NF-κB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-κB. Lipopolysaccharide (LPS)-induced activation of NF-κB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IκB-α. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-κB pathway.  相似文献   

13.
Sea urchin sperm have a single mitochondrion which, aside from its main ATP generating function, may regulate motility, intracellular Ca2+ concentration ([Ca2+]i) and possibly the acrosome reaction (AR). We have found that acute application of agents that inhibit mitochondrial function via differing mechanisms (CCCP, a proton gradient uncoupler, antimycin, a respiratory chain inhibitor, oligomycin, a mitochondrial ATPase inhibitor and CGP37157, a Na+/Ca2+ exchange inhibitor) increases [Ca2+]i with at least two differing profiles. These increases depend on the presence of extracellular Ca2+, which indicates they involve Ca2+ uptake and not only mitochondrial Ca2+ release. The plasma membrane permeation pathways activated by the mitochondrial inhibitors are permeable to Mn2+. Store-operated Ca2+ channel (SOC) blockers (Ni2+, SKF96365 and Gd2+) and internal-store ATPase inhibitors (thapsigargin and bisphenol) antagonize Ca2+ influx induced by the mitochondrial inhibitors. The results indicate that the functional status of the sea urchin sperm mitochondrion regulates Ca2+ entry through SOCs. As neither CCCP nor dicycloexyl carbodiimide (DCCD), another mitochondrial ATPase inhibitor, eliminate the oligomycin induced increase in [Ca2+]i, apparently oligomycin also has an extra mitochondrial target.  相似文献   

14.
Endocytosis is an important mechanism to regulate tumor necrosis factor (TNF) signaling. In contrast to TNF receptor 1 (TNFR1; CD120a), the relevance of receptor internalization for signaling as well as the fate and route of internalized TNF receptor 2 (TNFR2; CD120b) is poorly understood. To analyze the dynamics of TNFR2 signaling and turnover at the plasma membrane we established a human TNFR2 expressing mouse embryonic fibroblast cell line in a TNFR1−/−/TNFR2−/− background. TNF stimulation resulted in a decrease of constitutive TNFR2 ectodomain shedding. We hypothesized that reduced ectodomain release is a result of TNF/TNFR2 complex internalization. Indeed, we could demonstrate that TNFR2 was internalized together with its ligand and cytoplasmic binding partners. Upon endocytosis the TNFR2 signaling complex colocalized with late endosome/lysosome marker Rab7 and entered the lysosomal degradation pathway. Furthermore, we identified a di-leucin motif in the cytoplasmic part of TNFR2 suggesting clathrin-dependent internalization of TNFR2. Internalization defective TNFR2 mutants are capable to signal, i.e. activate NFκB, demonstrating that the di-leucin motif dependent internalization is dispensable for this response. We therefore propose that receptor internalization primarily serves as a negative feed-back to limit TNF responses via TNFR2.  相似文献   

15.
Calcium influx via store-operated calcium entry (SOCE) has an important role for regulation of vast majority of cellular physiological events. MAPK signalling is also another pivotal modulator of many cellular functions. However, the relationship between SOCE and MAPK is not well understood. In this study, we elucidated the involvement of SOCE in Gαq/11 protein-mediated activation of p38 MAPK in an intestinal epithelial cell line HT-29/B6. In this cell line, we previously showed that the stimulation of M3 muscarinic acetylcholine receptor (M3-mAChR) but not histamine H1 receptor (H1R) led to phosphorylation of p38 MAPK which suppressed tumor necrosis factor-α (TNF-α)-induced NF-κB signalling through ADAM17 protease-mediated shedding of TNF receptor-1 (TNFR1). First, we found that stimulation of M3-mAChR and protease-activated receptor-2 (PAR-2) but not H1R induced persistent upregulation of cytosolic Ca2+ concentration through SOCE. Activation of M3-mAChR or PAR-2 also suppressed TNF-α-induced NF-κB phosphorylation, which was dependent on the p38 MAPK activity. Time course experiments revealed that M3-mAChR stimulation evoked intracellular Ca2+-dependent early phase p38 MAPK phosphorylation and extracellular Ca2+-dependent later phase p38 MAPK phosphorylation. This later phase p38 MAPK phosphorylation, evoked by M3-mAChRs or PAR-2, was abolished by inhibition of SOCE. Thapsigargin or ionomycin also phosphorylate p38 MAPK by Ca2+ influx through SOCE, leading to suppression of TNF-α-induced NF-κB phosphorylation. Finally, we showed that p38 MAPK was essential for thapsigargin-induced cleavage of TNFR1 and suppression of TNF-α-induced NF-κB phosphorylation. In conclusion, SOCE is important for p38 MAPK phosphorylation and is involved in TNF-α signalling suppression.  相似文献   

16.
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.  相似文献   

17.
Human NDR1/STK38 belongs to the nuclear‐Dbf2‐related (NDR) family of Ser/Thr kinases. It has been implicated to function in centrosome duplication, control of cell cycle and apoptosis. However, the mechanism of NDR1 signaling pathway remains largely elusive. Here, we report a novel role of NDR1 in NF‐κB activation. By overexpression, NDR1 potentiates NF‐κB activation induced by TNFα, whereas knockdown of NDR1 expression inhibits NF‐κB activation induced by TNFα. Coimmunoprecipitation shows that NDR1 interacts with multiple signal components except p65 in NF‐κB signaling pathway. Furthermore, both phosphorylation and kinase dead mutants of NDR1 lose their synergistic effects on TNFα‐induced NF‐κB activation. siRNA oligo against NDR1 and kinase dead mutant as well mainly block the NF‐κB activation induced by TRAF2 but not RIP1. Furthermore, kinase dead mutant of NDR1 fails to interact with TRAF2. Taken together, our findings suggest an unknown function of NDR1, which may regulate NF‐κB activation by its kinase activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Bidirectional signaling between the sarcolemmal L-type Ca2+ channel (1,4-dihydropyridine receptor [DHPR]) and the sarcoplasmic reticulum (SR) Ca2+ release channel (type 1 ryanodine receptor [RYR1]) of skeletal muscle is essential for excitation–contraction coupling (ECC) and is a well-understood prototype of conformational coupling. Mutations in either channel alter coupling fidelity and with an added pharmacologic stimulus or stress can trigger malignant hyperthermia (MH). In this study, we measured the response of wild-type (WT), heterozygous (Het), or homozygous (Hom) RYR1-R163C knock-in mouse myotubes to maintained K+ depolarization. The new findings are: (a) For all three genotypes, Ca2+ transients decay during prolonged depolarization, and this decay is not a consequence of SR depletion or RYR1 inactivation. (b) The R163C mutation retards the decay rate with a rank order WT > Het > Hom. (c) The removal of external Ca2+ or the addition of Ca2+ entry blockers (nifedipine, SKF96365, and Ni2+) enhanced the rate of decay in all genotypes. (d) When Ca2+ entry is blocked, the decay rates are slower for Hom and Het than WT, indicating that the rate of inactivation of ECC is affected by the R163C mutation and is genotype dependent (WT > Het > Hom). (e) Reduced ECC inactivation in Het and Hom myotubes was shown directly using two identical K+ depolarizations separated by varying time intervals. These data suggest that conformational changes induced by the R163C MH mutation alter the retrograde signal that is sent from RYR1 to the DHPR, delaying the inactivation of the DHPR voltage sensor.  相似文献   

19.
Background and aimsFargesin mainly functions in the improvement of lipid metabolism and the inhibition of inflammation, but the role of fargesin in atherogenesis and the molecular mechanisms have not been defined. We aimed to explore if and how fargesin affects atherosclerosis by regulating lipid metabolism and inflammatory response.Methods and resultsApoE−/− mice were fed a high-fat diet to form atherosclerotic plaques and then administrated with fargesin or saline via gavage. Oil Red O, HE and Masson staining were performed to assess atherosclerostic plaques in apoE−/− mice. [3H] labeled cholesterol was used to detect cholesterol efflux and reverse cholesterol transport (RCT) efficiency. Enzymatic methods were performed to analyze plasma lipid profile in apoE−/− mice. Immunohistochemistry was used to analyze macrophage infiltration. THP-1-derived macrophages were incubated with fargesin or not. Both Western blot and qRT-PCR were applied to detect target gene expression. Oil Red O staining was applied to examine lipid accumulation in THP-1-derived macrophages. ELISA and qRT-PCR were used to examine the levels of inflammatory mediotors. We found that fargesin reduced atherosclerotic lesions by elevating efficiency of RCT and decreasing inflammatory response via upregulation of ABCA1 and ABCG1 expression in apoE−/− mice. Further, fargesin reduced lipid accumulation in THP-1-derived macrophages. Besides, fargesin increased phosphorylation of CEBPα in Ser21 and then upregulated LXRα, ABCA1 and ABCG1 expression in THP-1-derived macrophages. In addition, fargesin could reduce ox-LDL-induced inflammatory response by inactivation of the TLR4/NF-κB pathway.ConclusionThese results suggest that fargesin inhibits atherosclerosis by promoting RCT process and reducing inflammatory response via CEBPαS21/LXRα and TLR4/NF-κB pathways, respectively.  相似文献   

20.
We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-Kv1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K+ and Ca2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K+ channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca2+ signaling. Electric fields enhanced Ca2+ spike amplitude and triggered formation of a second traveling Ca2+ wave. Mibefradil blocked Ca2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号