首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The mutation him-6(e1423) leads to generalized chromosomal nondisjunction during meiosis in oogenesis and spermatogenesis of C. elegans. As a result, gametes nullisomic or disomic for each of the six chromosomes occur at appreciable frequency. Crosses utilizing marked him-6 strains were used to generate and identify exceptional euploid progeny which had received both homologues of a marked autosome either from the male parent or from the female parent. Examples of all ten possible exceptions were identified and found to be viable and fertile. These results (together with previous data for the X chromosome) indicate that major chromosomal imprinting effects do not occur during gametogenesis in this organism.  相似文献   

2.
The functional role of the ABC transporter PGP-2 from the nematode Caenorhabditis elegans has been studied by combining phenotype analyses of pgp-2 deletion mutants or pgp-2 RNAi treated worms with reporter gene studies using a pgp-2::GFP construct. pgp-2 mutants showed a strong reduction of lipid stores. In addition, we found that in the case of the pgp-2 mutant or after pgp-2 RNAi the worms were unable to perform pinocytosis and to acidify intestinal lysosomes. Especially under cholesterol-restricted conditions, the viability of the mutant was reduced. Surprisingly, the chemosensory AWA neurons in the head region were identified as expression sites by reporter gene studies. These neurons are known to be involved in attraction behaviour towards odorants associated with potential food bacteria. Our results imply that PGP-2 is involved in a signalling process that connects sensory inputs to intestinal functions, possibly by influencing acidification of intestinal lysosomes, which in turn may affect pinocytosis and lipid storage.  相似文献   

3.
Kim S  Lee J  Ahnn J 《Molecules and cells》2000,10(2):226-231
Flectin is a new type of extracellular matrix protein and its function was suggested to provide a micro-environment of great elasticity. The C. elegans genome database revealed the presence of a flectin homologue, flt-1, which shows approximately 40% similarity (20% identity) to chick flectin. Here we propose a new gene structure for the flt-1 based on our experiments and the partial cDNA clones obtained from Y. Kohara and further suggest that the previous gene prediction is incorrect. FLT-1 is shown to be expressed in various neurons, hypodermal cells, distal tip cells and vulva epithelial cells. Immunostaining results with anti-FLT-1 antibody, further confirm the FLT-1 expression in vulva epithelial cells. The lipophilic dye, DiI, was used to identify the head neurons expressing GFP and results indicated that none of the head neurons expressing GFP are the 6 chemosensory neurons. In order to determine the function of flt-1 gene, RNA-mediated interference (RNAi) experiments were conducted.  相似文献   

4.
Information on the functional genomics of Caenorhabditis elegans has increased significantly in the last few years with the development of RNA interference. In parasitic nematodes, RNA interference has shown some success in gene knockdown but optimisation of this technique will be required before it can be adopted as a reliable functional genomics tool. Comparative studies in C. elegans remain an appropriate alternative for studying the function and regulation of some parasite genes and will be extremely useful for fully exploiting the increasing parasite genome sequence data becoming available.  相似文献   

5.
Summary Mutations in the major gut esterase of the nematode Caenorhabditis elegans have been induced by ethylmethane sulfonate and detected by isoelectric focusing. The gut esterase locus, denoted ges-1, maps less than 0.3 map units to the right of the unc-60 locus, at the left end of chromosome V.  相似文献   

6.
The Caenorhabditis elegans genome encodes a series of hedgehog-related genes, which are thought to have evolved and diverged from an ancestral Hh gene. They are classified into several families based on their N-terminal domains. Here, we analyze the expression and function of a member of the warthog gene family, wrt-5, that lacks the Hint/Hog domain. wrt-5 is expressed in seam cells, the pharynx, pharyngeal-intestinal valve cells, neurons, neuronal support cells, the excretory cell, and the reproductive system. WRT-5 protein is secreted into the extracellular space during embryogenesis. Furthermore, during larval development, WRT-5 protein is secreted into the pharyngeal lumen and the pharyngeal expression changes in a cyclical manner in phase with the molting cycle. Deletion mutations in wrt-5 cause embryonic lethality, which are temperature sensitive and more severe at 15 degrees C than at 25 degrees C. Animals that hatch exhibit variable abnormal morphology, for example, bagging worms, blistering, molting defects, or Roller phenotypes. We examined hypodermal cell junctions using the AJM-1Colon, two colonsGFP marker in the wrt-5 mutant background and observed cell boundary abnormalities in the arrested embryos. AJM-1Colon, two colonsGFP protein is also misplaced in pharyngeal muscle cells in the absence of WRT-5. In conclusion, we show that wrt-5 is an essential gene that - despite its lack of a Hint domain - has multiple functions in C. elegans and is implicated in cell shape integrity.  相似文献   

7.
Homopolymeric nucleotide runs, also called mononucleotide microsatellites, are a ubiquitous, dominant, and mutagenic feature of eukaryotic genomes. A clear understanding of the forces that shape patterns of homopolymer evolution, however, is lacking. We provide a focused investigation of the abundance, chromosomal distribution, and mutation spectra of the four strand-specific homopolymer types (A, T, G, C) 8 bp in the genome of Caenorhabditis elegans. A and T homopolymers vastly outnumber G and C HPs, and the run-length distributions of A and T homopolymers differ significantly from G and C homopolymers. A scanning window analysis of homopolymer chromosomal distribution reveals distinct clusters of homopolymer density in autosome arms that are regions of high recombination in C. elegans. Dramatic biases are detected among closely spaced homopolymers; for instance, we observe 994 A homopolymers immediately followed by a T homopolymer (5 to 3) and only 8 instances of T homopolymers directly followed by an A homopolymer. Empirical homopolymer mutation assays in a set of C. elegans mutation-accumulation lines reveal an 20-fold higher mutation rate for G and C homopolymers compared to A and T homopolymers. Nuclear A and T homopolymers are also found to mutate 100-fold more slowly than mitochondrial A and T homopolymers. This integrative approach yields a total nuclear genome-wide homopolymer mutation rate estimate of 1.6 mutations per genome per generation.Novel sequences are deposited in GenBank under accession numbers AY219759–AY219789.  相似文献   

8.
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants, we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles for some transporter genes in endogenous RNAi-related processes.  相似文献   

9.
10.
Autosomal dominant polycystic kidney disease (ADPKD) and nephronophthisis (NPH) share two common features: cystic kidneys and ciliary localized gene products. Mutation in either the PKD1 or PKD2 gene accounts for 95% of all ADPKD cases. Mutation in one of four genes (NPHP1-4) results in nephronophthisis. The NPHP1, NPHP2, PKD1, and PKD2 protein products (nephrocystin-1, nephrocystin-2 or inversin, polycystin-1, and polycystin-2, respectively) localize to primary cilia of renal epithelia. However, the relationship between the nephrocystins and polycystins, if any, is unknown. In the nematode Caenorhabditis elegans, the LOV-1 and PKD-2 polycystins localize to male-specific sensory cilia and are required for male mating behaviors. To test the hypothesis that ADPKD and NPH cysts arise from a common defect in cilia, we characterized the C. elegans homologs of NPHP1 and NPHP4. C. elegans nphp-1 and nphp-4 are expressed in a subset of sensory neurons. GFP-tagged NPHP-1 and NPHP-4 proteins localize to ciliated sensory endings of dendrites and colocalize with PKD-2 in male-specific sensory cilia. The cilia of nphp-1(ok500) and nphp-4(tm925) mutants are intact. nphp-1; nphp-4 double, but not single, mutant males are response defective. We propose that NPHP-1 and NPHP-4 proteins play important and redundant roles in facilitating ciliary sensory signal transduction.  相似文献   

11.
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.  相似文献   

12.
Kim TH  Kim YJ  Cho JW  Shim J 《FEBS letters》2011,(1):121-127
Cuticle formation and molting are critical for the development of Caenorhabditis elegans. To understand cuticle formation more clearly, we screened for suppressors in transgenic worms that expressed dominant ROL-6 collagen proteins. The suro-1 mutant, which is mild dumpy, exhibited a different ROL-6::GFP localization pattern compared to other Dpy mutants. We identified mutations in three suro-1 mutants, and found that suro-1 (ORF R11A5.7) encodes a putative zinc-carboxypeptidase homologue. The expression of this enzyme in the hypodermis and the genetic interactions between this enzyme and other collagen-modifying enzyme mutants suggest a regulatory role in collagen processing and cuticle organization for this novel carboxypeptidase. These findings aid our understanding of cuticle formation during worm development.  相似文献   

13.
Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1 in ASJ neurons during aging, which in turn triggers TRX-1-dependent mechanisms to extend adult lifespan in the worm.  相似文献   

14.
15.
16.
A family of antioxidant proteins, the peroxiredoxins, serve two purposes, detoxification of reactive oxygen species and cellular signaling. Among the three peroxiredoxins of Caenorhabditis elegans (CePrx1-3), CePrx2 was found to have a very unusual expression pattern, restricted to only two types of pharyngeal neurons; namely, the single pharyngeal interneuron I4 and the sensory interneuron I2. CePrx1 and CePrx3-depleted worms showed no obvious phenotypic alterations, whereas worms devoid of CePrx2 were retarded developmentally and had a significantly reduced brood size. Other features, such as lifespan, pharyngeal activity or defecation rates were indistinguishable from those of wild-type worms. Recombinant CePrx2 revealed antioxidant activity, as it was able to detoxify hydrogen peroxide and butylhydroperoxide (t-BOOH), and to protect glutamine synthetase from inactivation by thiol-dependent metal-catalyzed oxidation. In addition, the molecule was able to act as a terminal peroxidase in the thioredoxin system. Expression of ceprx2 in C.elegans was induced after short-term exposure of worms to t-BOOH but survival of ceprx2 knockout mutants in the presence of reactive oxygen or nitrogen species was not impaired. Thus, CePrx2 may protect specifically the two types of neurons from oxidative damage or, more likely, plays a critical role in peroxide signaling in this nematode.  相似文献   

17.
Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariners half-life (the time by which half an elements sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome. When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois.  相似文献   

18.
Gamma-glutamylcysteine synthetase (γ-GCS) catalyzes the first, rate-limiting step in the biosynthesis of glutathione (GSH). To evaluate the protective role of cellular GSH against arsenic-induced oxidative stress in Caenorhabditis elegans (C. elegans), we examined the effect of the C. elegans ortholog of GCS(h), gcs-1, in response to inorganic arsenic exposure. We have evaluated the responses of wild-type and gcs-1 mutant nematodes to both inorganic arsenite (As(III)) and arsenate (As(V)) ions and found that gcs-1 mutant nematodes are more sensitive to arsenic toxicity than that of wild-type animals. The amount of metal ion required to kill half of the population of worms falls in the order of wild-type/As(V)>gcs-1/As(V)> wild-type/As(III)>gcs-1/As(III). gcs-1 mutant nematodes also showed an earlier response to the exposure of As(III) and As(V) than that of wild-type animals. Pretreatment with GSH significantly raised the survival rate of gcs-1 mutant worms compared to As(III)- or As(V)-treated worms alone. These results indicate that GCS-1 is essential for the synthesis of intracellular GSH in C. elegans and consequently that the intracellular GSH status plays a critical role in protection of C. elegans from arsenic-induced oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号