首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Ubiquilin/PLIC proteins belong to the family of UBL-UBA proteins implicated in the regulation of the ubiquitin-dependent proteasomal degradation of cellular proteins. A human presenilin-interacting protein, ubiquilin-1, has been suggested as potential therapeutic target for treating Huntington's disease. Ubiquilin's interactions with mono- and polyubiquitins are mediated by its UBA domain, which is one of the tightest ubiquitin binders among known ubiquitin-binding domains. Here we report the three-dimensional structure of the UBA domain of ubiquilin-1 (UQ1-UBA) free in solution and in complex with ubiquitin. UQ1-UBA forms a compact three-helix bundle structurally similar to other known UBAs, and binds to the hydrophobic patch on ubiquitin with a Kd of 20 μM. To gain structural insights into UQ1-UBA's interactions with polyubiquitin chains, we have mapped the binding interface between UQ1-UBA and Lys48- and Lys63-linked di-ubiquitins and characterized the strength of UQ1-UBA binding to these chains. Our NMR data show that UQ1-UBA interacts with the individual ubiquitin units in both chains in a mode similar to its interaction with mono-ubiquitin, although with an improved binding affinity for the chains. Our results indicate that, in contrast to UBA2 of hHR23A that has strong binding preference for Lys48-linked chains, UQ1-UBA shows little or no binding selectivity toward a particular chain linkage or between the two ubiquitin moieties in the same chain. The structural data obtained in this study provide insights into the possible structural reasons for the diversity of polyubiquitin chain recognition by UBA domains.  相似文献   

2.
Aggregation of the Aβ1–40 peptide is linked to the development of extracellular plaques characteristic of Alzheimer’s disease. While previous studies commonly show the Aβ1–40 is largely unstructured in solution, we show that Aβ1–40 can adopt a compact, partially folded structure. In this structure (PDB ID: 2LFM), the central hydrophobic region of the peptide forms a 310 helix from H13 to D23 and the N- and C-termini collapse against the helix due to the clustering of hydrophobic residues. Helical intermediates have been predicted to be crucial on-pathway intermediates in amyloid fibrillogenesis, and the structure presented here presents a new target for investigation of early events in Aβ1–40 fibrillogenesis.  相似文献   

3.
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of “high-risk” human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.  相似文献   

4.
The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.  相似文献   

5.
Ubiquitin (Ub) is one of the most highly conserved signaling proteins in eukaryotes. In carrying out its myriad functions, Ub conjugated to substrate proteins interacts with dozens of receptor proteins that link the Ub signal to various biological outcomes. Here we report mutations in conserved residues of Ub's hydrophobic core that have surprisingly potent and specific effects on molecular recognition. Mutant Ubs bind tightly to the Ub-associated domain of the receptor proteins Rad23 and hHR23A but fail to bind the Ub-interacting motif present in the receptors Rpn10 and S5a. Moreover, chains assembled on target substrates with mutant Ubs are unable to support substrate degradation by the proteasome in vitro or sustain viability of yeast cells. The mutations have relatively little effect on Ub's overall structure but reduce its rigidity and cause a slight displacement of the C-terminal β-sheet, thereby compromising association with Ub-interacting motif but not with Ub-associated domains. These studies emphasize an unexpected role for Ub's core in molecular recognition and suggest that the diversity of protein-protein interactions in which Ub engages placed enormous constraints on its evolvability.  相似文献   

6.
Experiments were performed to compare the regioselective hydroxylation of the isopropyl C-H bond at C-25 in 5α-cholestan-3β-yl acetate by in situ generated dimethyldioxirane, methyl(trifluoromethyl)dioxirane, hexafluoro(dimethyl)dioxirane or ethyl(trifluoromethyl)dioxirane (ETDO). The dioxiranes were generated from the corresponding ketones and potassium peroxymonosulfate in aq. NaHCO3, pH 7.5-8.0. Of the four dioxiranes examined, partially fluorinated, sterically bulky ETDO displayed the highest reactivity and regioselectivity. Using in situ generated ETDO, a facile, synthesis was developed for two naturally occurring oxysterols, i.e., 25-hydroxycholesterol, as well as its 3-sulfate (overall yield of the sulfate, 24%) and 24-oxocholesterol (16%), starting from cholesterol.  相似文献   

7.
Although, most studies of human skeletal muscle in vivo have reported the co-existence of impaired insulin sensitivity and reduced expression of oxidative phosphorylation genes, there is so far no clear evidence for whether the intrinsic ATP synthesis is primarily decreased or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n = 20 in each group), precultured under normophysiological conditions in order to verify intrinsic impairments. To resemble dynamic equilibrium present in whole cells between ATP synthesis and utilization, ATP was measured in the presence of an ATP consuming enzyme, hexokinase, under steady state. Mitochondria were isolated using an affinity based method which selects the mitochondria based on an antibody recognizing the mitochondrial outer membrane and not by size through gradient centrifugation. The dynamic equilibrium between ATP synthesis and ATP consumption is 35% lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis.  相似文献   

8.
IDPs in their unbound state can transiently acquire secondary and tertiary structure. Describing such intrinsic structure is important to understand the transition between free and bound state, leading to supramolecular complexes with physiological interactors. IDP structure is highly dynamic and, therefore, difficult to study by conventional techniques. This work focuses on conformational analysis of the KID fragment of the Sic1 protein, an IDP with a key regulatory role in the cell-cycle of Saccharomyces cerevisiae. FT-IR spectroscopy, ESI-MS, and IM measurements are used to capture dynamic and short-lived conformational states, probing both secondary and tertiary protein structure. The results indicate that the isolated Sic1 KID retains dynamic helical structure and populates collapsed states of different compactness. A metastable, highly compact species is detected. Comparison between the fragment and the full-length protein suggests that chain length is crucial to the stabilization of compact states of this IDP. The two proteins are compared by a length-independent compaction index.  相似文献   

9.
The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions with cellular membranes. The bilayer association of the peptides has been shown to be strongly pH-dependent, with in-planar alignments under acidic conditions and transmembrane orientations when the histidines are discharged. Therefore, we investigated the pH- and temperature-dependent conformations of LAH4 in DPC micellar solutions and in a TFE/PBS solvent mixture. In the presence of detergent and at pH 4.1, LAH4 adopts helical conformations between residues 9 and 24 concomitantly with a high hydrophobic moment. At pH 6.1, a helix-loop-helix structure forms with a hinge encompassing residues His10-Ala13. The data suggest that the high density of histidine residues and the resulting electrostatic repulsion lead to both a decrease in the pK values of the histidines and a less stable α-helical conformation of this region. The hinged structure at pH 6.1 facilitates membrane anchoring and insertion. At pH 7.8, the histidines are uncharged and an extended helical conformation including residues 4-21 is again obtained. LAH4 thus exhibits a high degree of conformational plasticity. The structures provide a stroboscopic view of the conformational changes that occur during membrane insertion, and are discussed in the context of antimicrobial activity and DNA transfection.  相似文献   

10.
Interaction between the signal-transducing adapter molecule 1 (STAM1) Vps27/Hrs/Stam (VHS) domain and ubiquitin was investigated by nuclear magnetic resonance (NMR) spectroscopy. NMR evidence showed that the structure of STAM1 VHS domain resembles that of other VHS domains, especially the homologous domain of STAM2. We found that the VHS domain binds to ubiquitin via its hydrophobic patch consisting of N-terminus of helix 2 and C-terminus of helix 4 in which Trp26 on helix 2 plays a pivotal role in the binding. The binding between VHS and ubiquitin seems to be very similar to that between ubiquitin associated domain (UBA) and ubiquitin, however, the direction of α-helices involved in the ubiquitin binding is opposite. Here, we propose a novel ubiquitin binding site and the manner of ubiquitin recognition of the STAM1 VHS domain.

Structured summary

MINT-6804185:STAM1 (uniprotkb:Q92783) binds (MI:0407) to ubiquitin (uniprotkb:P62988) by nuclear magnetic resonance (MI:0077)  相似文献   

11.
Erik Kish-Trier 《FEBS letters》2009,583(19):3121-3126
The peripheral stalk of the archaeal ATP synthase (A1A0)-ATP synthase is formed by the heterodimeric EH complex and is part of the stator domain, which counteracts the torque of rotational catalysis. Here we used nuclear magnetic resonance spectroscopy to probe the interaction of the C-terminal domain of the EH heterodimer (ECT1HCT) with the N-terminal 23 residues of the B subunit (BNT). The data show a specific interaction of BNT peptide with 26 residues of the ECT1HCT domain, thereby providing a molecular picture of how the peripheral stalk is anchored to the A3B3 catalytic domain in A1A0.

Structured summary

MINT-7260681: Hct (refseq:NP_393485), Ect1 (uniprotkb:Q9HM68) and Bnt (uniprotkb:Q9HM64) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

12.
A tertiary structure of recombinant A22G-B31K-B32R-human insulin monomer (insulin GKR) has been characterized by 1H, 13C NMR at natural isotopic abundance using NOESY, TOCSY, 1H/13C-GHSQC, and 1H/13C-GHSQC-TOCSY spectra. Translational diffusion studies indicate the monomer structure in water/acetonitrile (65/35 vol.%). CSI analysis confirms existence of secondary structure motifs present in human insulin standard (HIS). Both techniques allow to establish that in this solvent recombinant insulin GKR exists as a monomer. Starting from structures calculated by the program CYANA, two different refinement protocols used molecular dynamics simulated annealing with the program AMBER; in vacuum (AMBER_VC), and including a generalized Born solvent model (AMBER_GB). From these calculations an ensemble of 20 structures of lowest energy was chosen which represents the tertiary structure of studied insulin. Here we present novel insulin with added A22G amino acid which interacts with β-turn environment resulting in high flexibility of B chain C-terminus.  相似文献   

13.
During the late phase of retroviral replication, newly synthesized Gag proteins are targeted to the plasma membrane (PM), where they assemble and bud to form immature virus particles. Membrane targeting by human immunodeficiency virus type 1 (HIV-1) Gag is mediated by the PM marker molecule phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], which is capable of binding to the matrix (MA) domain of Gag in an extended lipid conformation and of triggering myristate exposure. Here, we show that, as observed previously for HIV-1 MA, the myristyl group of HIV-2 MA is partially sequestered within a narrow hydrophobic tunnel formed by side chains of helices 1, 2, 3, and 5. However, the myristate of HIV-2 MA is more tightly sequestered than that of the HIV-1 protein and does not exhibit concentration-dependent exposure. Soluble PI(4,5)P2 analogs containing truncated acyl chains bind HIV-2 MA and induce minor long-range structural changes but do not trigger myristate exposure. Despite these differences, the site of HIV-2 assembly in vivo can be manipulated by enzymes that regulate PI(4,5)P2 localization. Our findings indicate that HIV-1 and HIV-2 are both targeted to the PM for assembly via a PI(4,5)P2-dependent mechanism, despite differences in the sensitivity of the MA myristyl switch, and suggest a potential mechanism that may contribute to the poor replication kinetics of HIV-2.  相似文献   

14.
15.
O,O′-Dipropyldithiophosphate and O,O′-dibutyldithiophosphate (Dtph) cadmium(II) complexes were prepared and studied by means of heteronuclear 31P, 113Cd, 31C CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Linear-chain polynuclear structures have been established for both cadmium(II) complexes, in which each pair of equivalent dithiophosphate groups, playing the same bridging structural function, asymmetrically links the neighbouring cadmium atoms. One remarkable structural feature of the synthesised cadmium(II) compounds is defined by the alternation of two types of conformationally different (‘chair’-‘saddle’) eight-membered rings [Cd2S4P2] in the polymeric chains. Therefore, in both 31P NMR and XRD data, the bridging dithiophosphate ligands exhibit structural inequivalence in pairs. The structural states of both Dtph ligands and cadmium atoms have been characterised by the 31P and 113Cd chemical shift tensors, which display a profound axially symmetric and mainly rhombic characters, respectively. All experimental 31P resonances were assigned to the phosphorus structural sites in both resolved structures.  相似文献   

16.
Myelin basic protein (MBP, 18.5 kDa isoform) is a peripheral membrane protein that is essential for maintaining the structural integrity of the multilamellar myelin sheath of the central nervous system. Reconstitution of the most abundant 18.5 kDa MBP isoform with lipid vesicles yields an aggregated assembly mimicking the protein's natural environment, but which is not amenable to standard solution NMR spectroscopy. On the other hand, the mobility of MBP in such a system is variable, depends on the local strength of the protein-lipid interaction, and in general is of such a time scale that the dipolar interactions are averaged out. Here, we used a combination of solution and solid-state NMR (ssNMR) approaches: J-coupling-driven polarization transfers were combined with magic angle spinning and high-power decoupling to yield high-resolution spectra of the mobile fragments of 18.5 kDa murine MBP in membrane-associated form. To partially circumvent the problem of short transverse relaxation, we implemented three-dimensional constant-time correlation experiments (NCOCX, NCACX, CONCACX, and CAN(CO)CX) that were able to provide interresidue and intraresidue backbone correlations. These experiments resulted in partial spectral assignments for mobile fragments of the protein. Additional nuclear Overhauser effect spectroscopy (NOESY)-based experiments revealed that the mobile fragments were exposed to solvent and were likely located outside the lipid bilayer, or in its hydrophilic portion. Chemical shift index analysis showed that the fragments were largely disordered under these conditions. These combined approaches are applicable to ssNMR investigations of other peripheral membrane proteins reconstituted with lipids.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号