首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immobilization efficiency of molecular detectors is of great importance with regard to the performances of biosensors such as the sensitivity, stability, and reproducibility. This paper presents a biomimetic olfactory receptor-based biosensor with better performances by improving the immobilization efficiency of molecular detectors for odorant sensing. A mixed self-assembled monolayers (SAMs) functionalized with specific olfactory receptors (ODR-10) was constructed on the sensitive area of surface acoustic wave (SAW) chip. The immobilization of ODR-10 was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The responses of this biosensor to various odorants were recorded by monitoring the resonance frequency shifts of SAW, which is correlated to the mass loading on its sensitive area. All the results demonstrate this biosensor can specifically respond to the natural ligand of ODR-10, diacetyl, with high sensitivity and stability. The sensitivity is 4 kHz/ng, which is 2× higher than that of previous work. The detection limit is 1.2×10(-11) mM. The major advances on immobilization efficiency of molecular detectors presented in this work could substantially promote and accelerate the researches and applications of olfactory receptor-based biosensors with different transducers, such as quartz crystal microbalance (QCM), surface plasma resonance (SPR), and field effect transistors (FET).  相似文献   

2.
An olfactory receptor protein of C. elegans, ODR-10, was expressed in Escherichia coli as a fusion protein, with GST and 6x His-tag. The expression of the target protein was analyzed by SDS-PAGE and Western blot, and was confirmed to be expressed at the membrane fraction of the host E. coli. The surface of a quartz crystal microbalance (QCM) was coated with crude membrane extracts, containing the expressed receptor protein, and the interaction between the olfactory receptor and various odorant molecules examined. Compared with other odorants, diacetyl (2,3-butanedione), known as a natural ligand for the ODR-10 receptor, interacted most strongly with the expressed protein. Various concentrations of diacetyl were applied to the expressed ODR-10 receptor, and the response of the QCM showed a linear relationship to the logarithmic value of the odorant concentration. This piezoelectric biosensor system, using olfactory receptor proteins expressed in E. coli, can be used in diagnostics, toxic chemical detection and the quality control of food.  相似文献   

3.
Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia. Anterograde and retrograde vesicles move at different speeds, suggesting that dendrites have polarized transport mechanisms. Residues immediately after the seventh membrane-spanning domain of ODR-10 are required for localization; these residues are conserved in many G protein-coupled receptors. UNC-101 encodes a mu1 subunit of the AP-1 clathrin adaptor complex. In unc-101 mutants, dendritic vesicles are absent, ODR-10 receptor is evenly distributed over the plasma membrane, and other cilia membrane proteins are also mislocalized, implicating AP-1 in protein sorting to olfactory cilia.  相似文献   

4.
L'Etoile ND  Bargmann CI 《Neuron》2000,25(3):575-586
Animals in complex environments must discriminate between salient and uninformative sensory cues. Caenorhabditis elegans uses one pair of olfactory neurons called AWC to sense many different odorants, yet the animal can distinguish each odorant from the others in discrimination assays. We demonstrate that the transmembrane guanylyl cyclase ODR-1 is essential for responses to all AWC-sensed odorants. ODR-1 appears to be a shared signaling component downstream of odorant receptors. Overexpression of ODR-1 protein indicates that ODR-1 can influence odor discrimination and adaptation as well as olfaction. Adaptation to one odorant, butanone, is disrupted by ODR-1 overexpression. Olfactory discrimination is also disrupted by ODR-1 overexpression, probably by overproduction of the shared second messenger cGMP. We propose that AWC odorant signaling pathways are insulated to permit odor discrimination.  相似文献   

5.
Lehman CW  Lee JD  Komives CF 《Genomics》2005,85(3):386-391
Olfactory receptors are a diverse set of G-protein-coupled receptors (GPCRs) that localize to cellular plasma membranes in the olfactory epithelium. Associated trafficking proteins often assist in targeting these GPCRs to the membrane, facilitating function. One such trafficking protein has been isolated as a mutant defective for both odorant response and proper receptor localization in Caenorhabditis elegans. This gene (ODR-4) allows for functional expression of olfactory receptors in heterologous cells that are otherwise incapable of targeting. We have isolated a full-length human cDNA that is homologous to the C. elegans gene at the protein level across nearly the entire gene by using a novel RecA-based gene enrichment procedure. This sequence is homologous to a family of orthologs that share predicted structural features, indicating a conserved function. The gene was expressed in 41 of 44 human, mouse, and rat tissues, suggesting an important role in trafficking olfactory and other GPCRs.  相似文献   

6.
High-level production of G protein-coupled receptors (GPCRs) is usually difficult to achieve in heterologous cell systems. The inherent hydrophobicity of these receptors could cause aggregation and possible cytotoxicity. Cell-free (CF) expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. Here we reported the CF production of an olfactory receptor from Caenorhabditis elegans, odorant response abnormal protein 10 (ODR-10), a member of GPCRs, using the Escherichia coli extracts. Different expression vectors were investigated and 175 μg/ml total ODR-10 was achieved with pIVEX2.4c. To obtain soluble ODR-10, different detergents and liposome with varied concentrations were respectively added into the CF system. High-level expression of soluble ODR-10 (150 μg/ml) was attained with the addition of 1.5 % polyoxyethylene-(20)-cetyl-ether (Brij58) into the CF system. Furthermore, the yield of total ODR-10 was improved to 350 μg/ml by supplementing liposomes into the CF system, and the maximal concentration of the soluble receptor (102 μg/ml) was achieved in this liposome-assisted CF system. Both strategies produced ODR-10 efficiently by using CF system, and the direct reconstitution of the in vitro expressed receptor into liposomes will be preferred for its potential applications in many areas.  相似文献   

7.
The functional expression of olfactory receptors (ORs) is a primary requirement to examine the molecular mechanisms of odorant perception and coding. Functional expression of the rat I7 OR and its trafficking to the plasma membrane was achieved under optimized experimental conditions in the budding yeast Saccharomyces cerevisiae. The membrane expression of the receptor was shown by Western blotting and immunolocalization methods. Moreover, we took advantage of the functional similarities between signal transduction cascades of G protein-coupled receptor in mammalian cells and the pheromone response pathway in yeast to develop a novel biosensor for odorant screening using luciferase as a functional reporter. Yeasts were engineered to coexpress I7 OR and mammalian G(alpha) subunit, to compensate for the lack of endogenous Gpa1 subunit, so that stimulation of the receptor by its ligands activates a MAP kinase signaling pathway and induces luciferase synthesis. The sensitivity of the bioassay was significantly enhanced using mammalian G(olf) compared to the G(alpha15) subunit, resulting in dose-dependent responses of the system. The biosensor was probed with an array of odorants to demonstrate that the yeast-borne I7 OR retains its specificity and selectivity towards ligands. The results are confirmed by functional expression and bioluminescence response of human OR17-40 to its specific ligand, helional. Based on these findings, the bioassay using the luciferase reporter should be amenable to simple, rapid and inexpensive odorant screening of hundreds of ORs to provide insight into olfactory coding mechanisms.  相似文献   

8.
Olfaction depends on the selectivity and sensitivity of olfactory receptors. Previous attempts at constructing a mammalian olfactory receptor-based artificial odorant sensing system in the budding yeast Saccharomyces cerevisiae suffered from low sensitivity and activity. This result may be at least in part due to poor functional expression of olfactory receptors and/or limited solubility of some odorants in the medium. In this study, we examined the effects of two types of accessory proteins, receptor transporting protein 1 short and odorant binding proteins, in improving odor-mediated activation of olfactory receptors expressed in yeast. We found that receptor transporting protein 1 short enhanced the membrane expression and ligand-induced responses of some olfactory receptors. Coexpression of odorant binding proteins of the silkworm moth Bombyx mori enhanced the sensitivity of a mouse olfactory receptor. Our results suggest that different classes of accessory proteins can confer sensitive and robust responses of olfactory receptors expressed in yeast. Inclusion of accessory proteins may be essential in the future development of practical olfactory receptor-based odorant sensors.  相似文献   

9.
Recent advances in the development of bioelectronic nose   总被引:1,自引:0,他引:1  
The olfactory system has the ability to discriminate and identify thousands of odorant compounds at very low concentrations. Recently, many researchers have been trying to develop artificial sensing devices that are based on the olfactory system. A bioelectronic nose, which uses olfactory receptors (ORs) as sensing elements, would benefit naturally optimized molecular recognition. Accordingly, ORs can be effectively used as a biological element in bioelectronic noses. Bioelectronic nose can be classified into cell-based and protein-based biosensors. The cell-based biosensor uses living cells that express olfactory receptors as the biological sensing elements and the protein-based biosensor uses the olfactory receptor protein. The binding of odorant molecules to the ORs can be measured using various methods such as piezoelectric, optic, and electric devices. Thus, bioelectronic nose can be developed by combining the biological sensing elements with these non-biological devices. The application of bioelectronic nose in a wide range of different scientific and medical fields is essentially dependent on the development of highly sensitive and selective biosensors. These sensor systems for the rapid detection of specific odorants are crucial for environmental monitoring, anti-bioterrorism, disease diagnostics, and food safety. In this article, we reviewed recent advances in the development of bioelectronic nose.  相似文献   

10.
Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.  相似文献   

11.
Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm''s simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.  相似文献   

12.
It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.  相似文献   

13.
Olfactory receptors are difficult to functionally express in heterologous cells. They are typically retained in the endoplasmic reticulum of cells commonly used for functional expression studies and are only released to the plasma membrane in mature cells of the olfactory receptor neuron lineage. A recently developed olfactory cell line, odora, traffics olfactory receptors to the plasma membrane when differentiated. We found that undifferentiated odora cells do not traffic olfactory receptors to their surface, even though they release the receptors to the Golgi apparatus and endosomes. This behavior differs from other cell lines tested thus far. Differentiated odora cells also properly traffic vomeronasal receptors of the VN1 type, which lack sequence similarity to olfactory receptors. ODR-4, a protein that is necessary for plasma membrane trafficking of a chemosensory receptor in nematodes, facilitates trafficking of rat olfactory receptor U131 in odora and Chinese hamster ovary cells. Olfactory receptor trafficking from the endoplasmic reticulum to the plasma membrane involves at least two steps whose regulation depends on the maturation state of cells in the olfactory receptor neuron lineage. These results also indicate that some components of the regulatory mechanism are conserved.  相似文献   

14.
Primary olfactory neuronal cultures exposed to odorant stimulation have previously exhibited concentration-related effects in terms of intracellular cAMP levels and adenylate cyclase activity [Ronnett, G.V., Parfitt, D.J., Hester, L.D. & Snyder, S.H. (1991) PNAS88, 2366-2369]. Maximal stimulation occurred for intermediate concentrations, whereas AC activity declined for both low and high odorant concentrations. We suspected that this behavior might be ascribed to the intrinsic response of the first molecular species concerned by odorant detection, i.e. the olfactory receptor itself. In order to check this hypothesis, we developed an heterologous expression system in mammalian cells to characterize the functional response of receptors to odorants. Two mammalian olfactory receptors were used to initiate the study, the rat I7 olfactory receptor and the human OR17-40 olfactory receptor. The cellular response of transfected cells to an odorant stimulation was tested by a spectrofluorimetric intracellular calcium assay, and proved in all cases to be dose-dependent for the known ligands of these receptors, with an optimal response for intermediate concentrations. Further experiments were carried out with the rat I7 olfactory receptor, for which the sensitivity to an odorant, indicated by the concentration yielding the optimal calcium response, depended on the carbon chain length of the aldehydic odorant. The response is thus both ligand-specific and dose-dependent. We thus demonstrate that a differential dose-response originates from the olfactory receptor itself, which is thus capable of efficient discrimination between closely related agonists.  相似文献   

15.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

16.
This work shows the feasibility of an olfactory biosensor based on the immobilization of Saccharomyces cerevisiae yeast cells genetically modified to express the human olfactory receptor OR17-40 onto interdigitated microconductometric electrodes. This olfactory biosensor has been applied to the detection of its specific odorant (helional) with a high sensitivity (threshold 10−14 M). In contrast, no significant response was observed using a non-specific odorant (heptanal), which suggests a good selectivity. Thus, this work may represent a first step towards a new kind of bioelectronic noses based on whole yeast cells and allowing a real time monitoring of olfactory receptor activation. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet, France, 14–19 October, 2006.  相似文献   

17.
Colosimo ME  Tran S  Sengupta P 《Genetics》2003,165(4):1779-1791
Nuclear receptors regulate numerous critical biological processes. The C. elegans genome is predicted to encode approximately 270 nuclear receptors of which >250 are unique to nematodes. ODR-7 is the only member of this large divergent family whose functions have been defined genetically. ODR-7 is expressed in the AWA olfactory neurons and specifies AWA sensory identity by promoting the expression of AWA-specific signaling genes and repressing the expression of an AWC-specific olfactory receptor gene. To elucidate the molecular mechanisms of action of a divergent nuclear receptor, we have identified residues and domains required for different aspects of ODR-7 function in vivo. ODR-7 utilizes an unexpected diversity of mechanisms to regulate the expression of different sets of target genes. Moreover, these mechanisms are distinct in normal and heterologous cellular contexts. The odr-7 ortholog in the closely related nematode C. briggsae can fully substitute for all ODR-7-mediated functions, indicating conservation of function across 25-120 million years of divergence.  相似文献   

18.
Olfaction plays an indispensable role in human and animals in self and environmental recognition, as well as intra‐ and interspecific communication. Following the discovery of a family of olfactory receptors (ORs) by Buck and Axel in 1991, it has been established that the sense of smell begins with the molecular recognition of a chemical odorant by one or more ORs expressed in the olfactory sensory neurons. Therefore, characterization of the molecular interactions between odorant molecules and ORs is a key step in the elucidation of the general properties of the olfactory system and in the development of applications, i.e., design of new odorants, search for blockers, etc. The process putted in place at ChemCom to improve the expression of ORs at the cytoplasmic membrane of the HEK293 cell and assays enabling large‐scale deorphanization, and to characterize the interaction between chemical odorants and ORs is described. The family of human ORs includes ca. 400 putatively functional ORs which are GPCRs (G protein‐coupled receptors); to date over 100 human ORs have been deorphanized.  相似文献   

19.
A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.  相似文献   

20.
Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号