首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Su J  Tang Y  Zhou H  Liu L  Dong Q 《Cellular signalling》2012,24(11):2205-2215
Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways.  相似文献   

2.
The kallikrein/kinin system is beneficial in ischemia/reperfusion injury in heart, controversial in brain, but detrimental in lung, liver, and intestine. We examined the role of the kallikrein/kinin system in acute ischemia/reperfusion renal injury induced by 40 min occlusion of the renal artery followed by reperfusion. Rats were infused with tissue kallikrein protein 5 days before (pretreated group) or after (treated group) ischemia. Two days later, the pretreated group exhibited the worst renal dysfunction, followed by the treated group, then the control group. Kallikrein increased tubular necrosis and inflammatory cell infiltration with generation of more tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Reactive oxygen species (ROS), malondialdehyde, and reduced/oxidized glutathione measurement revealed that the oxidative stress was augmented by kallikrein administration in both ischemic and reperfusion phases. The groups with more ROS generation also had more apoptotic renal cells. The deleterious effects of kallikrein on ischemia/reperfusion injury were reversed by cotreatment with bradykinin B2 receptor (B2R) antagonist, but not B1 receptor antagonist, and were not associated with hemodynamic changes. We conclude that early activation of B2R augmented ROS generation in ischemia/reperfusion renal injury, resulting in subsequent apoptosis, inflammation, and tissue damage. This finding suggests the potential application of B2R antagonists in acute ischemic renal disease associated with bradykinin activation.  相似文献   

3.
Yin H  Chao L  Chao J 《Life sciences》2008,82(3-4):156-165
We assessed the role of nitric oxide (NO) and the kinin B2 receptor in mediating tissue kallikrein's actions in intramyocardial inflammation and cardiac remodeling after ischemia/reperfusion (I/R) injury. Adenovirus carrying the human tissue kallikrein gene was delivered locally into rat hearts 4 days prior to 30-minute ischemia followed by 24-hour or 7-day reperfusion with or without administration of icatibant, a kinin B2 receptor antagonist, or N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor. Kallikrein gene delivery improved cardiac contractility and diastolic function, reduced infarct size at 1 day after I/R without affecting mean arterial pressure. Kallikrein treatment reduced macrophage/monocyte and neutrophil accumulation in the infarcted myocardium in association with reduced intercellular adhesion molecule-1 levels. Kallikrein increased cardiac endothelial nitric oxide synthase phosphorylation and NO levels and decreased superoxide formation, TGF-beta1 levels and Smad2 phosphorylation. Furthermore, kallikrein reduced I/R-induced JNK, p38MAPK, IkappaB-alpha phosphorylation and nuclear NF-kappaB activation. In addition, kallikrein improved cardiac performance, reduced infarct size and prevented ventricular wall thinning at 7 days after I/R. The effects of kallikrein on cardiac function, inflammation and signaling mediators were all blocked by icatibant and L-NAME. These results indicate that tissue kallikrein through kinin B2 receptor and NO formation improves cardiac function, prevents inflammation and limits left ventricular remodeling after myocardial I/R by suppression of oxidative stress, TGF-beta1/Smad2 and JNK/p38MAPK signaling pathways and NF-kappaB activation.  相似文献   

4.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

5.
Impaired mitochondrial function is a key factor attributing to lung ischaemia‐reperfusion (IR) injury, which contributes to major post‐transplant complications. Thus, the current study was performed to investigate the role of mitochondrial autophagy in lung I/R injury and the involvement of the mTOR pathway. We established rat models of orthotopic left lung transplantation to investigate the role of mitochondrial autophagy in I/R injury following lung transplantation. Next, we treated the donor lungs with 3‐MA and Rapamycin to evaluate mitochondrial autophagy, lung function and cell apoptosis with different time intervals of cold ischaemia preservation and reperfusion. In addition, mitochondrial autophagy, and cell proliferation and apoptosis of pulmonary microvascular endothelial cells (PMVECs) exposed to hypoxia‐reoxygenation (H/R) were monitored after 3‐MA administration or Rapamycin treatment. The cell apoptosis could be inhibited by mitochondrial autophagy at the beginning of lung ischaemia, but was rendered out of control when mitochondrial autophagy reached normal levels. After I/R of donor lung, the mitochondrial autophagy was increased until 6 hours after reperfusion and then gradually decreased. The elevation of mitochondrial autophagy was accompanied by promoted apoptosis, aggravated lung injury and deteriorated lung function. Moreover, the suppression of mitochondrial autophagy by 3‐MA inhibited cell apoptosis of donor lung to alleviate I/R‐induced lung injury as well as inhibited H/R‐induced PMVEC apoptosis, and enhanced its proliferation. Finally, mTOR pathway participated in I/R‐ and H/R‐mediated mitochondrial autophagy in regulation of cell apoptosis. Inhibition of I/R‐induced mitochondrial autophagy alleviated lung injury via the mTOR pathway, suggesting a potential therapeutic strategy for lung I/R injury.  相似文献   

6.
Acute kidney injury (AKI) is mainly caused by renal ischaemia reperfusion injury (IRI). Lots of evidence suggests that ferroptosis and oxidative stress play the vital role in renal IRI. However, the specific mechanism of renal IRI has not been fully elucidated. lysine‐specific demethylase 1 (LSD1) has been shown to regulate the pathogenesis of kidney disease. In this study, we firstly found that LSD1 was positively related to renal IRI. TCP, a classical LSD1 inhibitor, could alleviate tissue damage induced by renal IRI. Inhibition of LSD1 with either TCP or LSD1 knockdown could alleviate ferroptosis and oxidative stress caused by IRI both in vivo and in vitro. Furthermore, the results showed that suppression of LSD1 decreased the expression of TLR4/NOX4 pathway in HK‐2 cells subjected to H/R. With the si‐RNA against TLR4 or NOX4, it showed that the silence of TLR4/NOX4 reduced oxidative stress and ferroptosis in vitro. Moreover, to demonstrate the crucial role of TLR4/NOX4, TLR4 reduction, mediated by inhibition of LSD1, was compensated through delivering the adenovirus carrying TLR4 in vitro. The results showed that the compensation of TLR4 blunted the alleviation of oxidative stress and ferroptosis, induced by LSD1 inhibition. Further study showed that LSD1 activates TLR4/NOX4 pathway by reducing the enrichment of H3K9me2 in the TLR4 promoter region. In conclusion, our results demonstrated that LSD1 inhibition blocked ferroptosis and oxidative stress caused by renal IRI through the TLR4/NOX4 pathway, indicating that LSD1 could be a potential therapeutic target for renal IRI.  相似文献   

7.
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Calcium overload is an important factor in myocardial ischemia–reperfusion injury and can lead to apoptosis of myocardial cells. Therefore, it is of great clinical importance to find ways to regulate calcium overload and reduce apoptosis of myocardial cells, and thus alleviate myocardial ischemia–reperfusion injury. There is evidence that heat shock protein 70 (HSP70) has a protective effect on the myocardium, but the exact mechanism of this effect is not completely understood. Stromal interaction molecule 1 and inositol 1,4,5-triphosphate receptor (STIM/1IP3R) play an important role in myocardial ischemia–reperfusion injury. Therefore, this study aimed to investigate whether HSP70 plays an anti-apoptotic role in H9C2 cardiomyocytes by regulating the calcium overload pathway through STIM1/IP3R. Rat H9C2 cells were subjected to transient oxygen and glucose deprivation (incubated in glucose-free medium and hypoxia for 6 h) followed by re-exposure to glucose and reoxygenation (incubated in high glucose medium and reoxygenation for 4 h) to simulate myocardial ischemia reperfusion-induced cell injury. H9C2 cell viability was significantly decreased, and lactate dehydrogenase (LDH) release and apoptosis were significantly increased after oxygen and glucose deprivation. Transfection of HSP70 into H9C2 cells could reduce the corresponding effect, increase cell viability and anti-apoptotic signal pathway, and reduce the apoptotic rate and pro-apoptotic signal pathway. After hypoxia and reoxygenation, the expression of STIM1/IP3R and intracellular calcium concentration of HSP70-overexpressed H9C2 cells were significantly lower than those of hypoxia cells. Similarly, direct silencing of STIM1 by siRNA significantly increased cell viability and expression of anti-apoptotic protein Bcl-2 and decreased apoptosis rate and expression of pro-apoptotic protein BAX. These data are consistent with HSP70 overexpression. These results suggest that HSP70 abrogates intracellular calcium overload by inhibiting upregulation of STIM1/IP3R expression, thus reducing apoptosis in H9C2 cells and playing a protective role in cardiomyocytes.  相似文献   

8.
Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR1), and by PAR1 inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR1-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.  相似文献   

9.
The administration of bradykinin may attenuate ischemia and reperfusion (I/R) injury by acting on B(2)Rs. Blockade of B(2)R has also been shown to ameliorate lesions associated with I/R injury. In an attempt to explain these contradictory results, the objective of the present work was to investigate the role of and interaction between B(1) and B(2) receptors in a model of intestinal I/R injury in mice. The bradykinin B(2)R antagonist (HOE 140) inhibited reperfusion-induced inflammatory tissue injury and delayed lethality. After I/R, there was an increase in the expression of B(1)R mRNA that was prevented by HOE 140. In mice that were deficient in B(1)Rs (B(1)R(-/-) mice), inflammatory tissue injury was abrogated, and lethality was delayed and partially prevented. Pretreatment with HOE 140 reversed the protective anti-inflammatory and antilethality effects provided by the B(1)R(-/-) phenotype. Thus, B(2)Rs are a major driving force for B(1)R activation and consequent induction of inflammatory injury and lethality. In contrast, activation of B(2)Rs may prevent exacerbated tissue injury and lethality, an effect unmasked in B(1)R(-/-) mice and likely dependent on the vasodilatory actions of B(2)Rs. Blockade of B(1)Rs could be a more effective strategy than B(2) or B(1)/B(2) receptor blockade for the treatment of the inflammatory injuries that follow I/R.  相似文献   

10.
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia‐reperfusion (I/R) injury (MIRI), but the role of p300/CBP‐associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF‐κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF‐κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF‐κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.  相似文献   

11.
探讨脑源性神经营养因子/酪氨酸激酶受体B(BDNF/TrkB)信号通路激活参与何首乌苷(PMG)对过氧化氢(H2O2)诱导神经元氧化应激损伤的保护作用。实验采用神经元原代培养,建立大鼠乳鼠海马神经元氧化应激损伤模型。实验结果显示高浓度的H2O2与MTT测定的细胞存活率降低相关,选择细胞存活率在40%~50%之间的200μmol/LH2O2浓度作为氧化应激损伤的实验浓度。与模型组相比,PMG预处理组(200μmol/L)可抑制H2O2诱导的神经元损伤(P<0.001)。TUNEL和β-微管蛋白III荧光染色显示PMG保护H2O2诱导的神经细胞损伤,明显降低细胞凋亡率(P<0.001),细胞骨架形态恢复正常。与PMG+H2O2预处理组相比较,当加入BDNF/TrkB信号转导通路阻断剂K252a后,PMG+H2O2+K252a组神经元细胞存活率大幅度下降(P<0.01),细胞骨架形态呈损伤状态。同时,我们发现PMG预处理恢复H2O2诱导的BDNF和P-TrkB的低表达水平,并且用K252a阻断BDNF/TrkB信号传导抑制了PMG对BDNF和P-TrkB表达水平的影响(P<0.01)。综上所述,何首乌苷可能通过激活BDNF/TrkB信号转导通路及维护神经元骨架的完整,实现对大鼠海马神经元氧化应激损伤的拮抗作用。  相似文献   

12.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

13.
Cryptotanshinone (CTS), an active component extracted from the root of Salvia miltiorrhiza Bunge , was reported to attenuate hepatic ischemia/reperfusion (I/R) injury. However, its protective effect against renal I/R injury remains unclear. In this study, the role of CTS in renal I/R injury in vitro and its possible mechanism were investigated. Our results showed that CTS improved cell viability in HK-2 cells exposed to hypoxia/reoxygenation (H/R). CTS also inhibited the H/R-mediated production of reactive oxygen species, as well as increased the activities of superoxide dismutase and catalase in H/R-stimulated HK-2 cells. In addition, CTS dramatically attenuated the induction of bax expression and caspase-3 activity and alleviated the reduction of bcl-2 expression in HK-2 cells cultured with H/R. Furthermore, CTS activated the levels of p-PI3K and p-Akt in H/R-injured HK-2 cells; meanwhile, the renal protective activity of CTS was inhibited by the inhibitor of the (phosphatidylinositol 3 kinase/protein kinase B) PI3K/Akt pathway (LY294002). These findings indicate that CTS can ameliorate renal I/R injury in vitro partly through regulating the PI3K/Akt pathway.  相似文献   

14.
Our previous study has shown that human tissue kallikrein protected against ischemia/reperfusion-induced myocardial injury. In the present study, we investigated the protective role of local kallikrein gene delivery in ischemia/reperfusion-induced cardiomyocyte apoptosis and its signaling mechanisms in promoting cardiomyocyte survival. Adenovirus carrying the human tissue kallikrein gene was delivered locally into the heart using a catheter-based technique. Expression and localization of recombinant human kallikrein in rat myocardium after gene transfer were determined immunohistochemically. Kallikrein gene delivery markedly reduced reperfusion-induced cardiomyocyte apoptosis identified by both in situ nick end-labeling and DNA fragmentation. Delivery of the kallikrein gene increased phosphorylation of Src, Akt, glycogen synthase kinase (GSK)-3beta, and Bad(Ser-136) but reduced caspase-3 activation in rat myocardium after reperfusion. The protective effect of kallikrein on apoptosis and its signaling mediators was blocked by icatibant and dominant-negative Akt, indicating a kinin B2 receptor-Akt-mediated event. Similarly, kinin or transduction of kallikrein in cultured cardiomyocytes promoted cell viability and attenuated apoptosis induced by hypoxia/reoxygenation. The effect of kallikrein on cardiomyocyte survival was blocked by dominant-negative Akt and a constitutively active mutant of GSK-3beta, but it was facilitated by constitutively active Akt, catalytically inactive GSK-3beta, lithium, and caspase-3 inhibitor. Moreover, kallikrein promoted Bad.14-3-3 complex formation and inhibited Akt-GSK-3beta-dependent activation of caspase-3, whereas caspase-3 administration caused reduction of the Bad.14-3-3 complex, indicating an interaction between Akt-GSK-caspase-3 and Akt-Bad.14-3-3 signaling pathways. In conclusion, kallikrein/kinin protects against cardiomyocyte apoptosis in vivo and in vitro via Akt-Bad.14-3-3 and Akt-GSK-3beta-caspase-3 signaling pathways.  相似文献   

15.
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.  相似文献   

16.
17.
18.
19.
Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)‐induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine‐restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells. TUNEL assay and flow cytometry were used to assess the apoptotic status of I/R mice and H/R cells. MTT was performed to analyse the proliferation of H/R cells. H2S assay was used to evaluate the concentration of H2S in the myocardial tissues and peripheral blood of I/R mice. I/R‐induced mediated myocardial injury and apoptosis were partially reversed by methionine‐restricted diet (MRD) via the down‐regulation of CSE expression and up‐regulation of CHOP and active caspase3 expression. The decreased H2S concentration in myocardial tissues and peripheral blood of I/R mice was increased by MRD. Accordingly, in a cellular model of I/R injury established with H9C2 cells, cell proliferation was inhibited, cell apoptosis was increased, and the expressions of CSE, CHOP and active caspase3 were dysregulated, whereas NaHS treatment alleviated the effect of I/R injury in H9C2 cells in a dose‐dependent manner. This study provided a deep insight into the mechanism underlying the role of MRD in I/R‐induced myocardial injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号