共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo. 相似文献
3.
Summary Root apical meristems are composed of two zones in which either formative or proliferative cell divisions occur. Within the formative zone, autoreproductive initial cells (a-cells) occupy distinctive locations. By means of graph-L-systems, the behavior of one such type of a-cells has been investigated, with particular reference to root caps within the developing primordia of lateral roots ofLycopersicon esculentum cultivated in vitro. Here, the a-cells constitute the protoderm initials, cells which are found also in the root cap of many angiosperm species. A set of cuboidal (i.e., six-sided) acells develops early in the ontogeny of a lateral-root primordium. Then, according to both anatomical observations and theoretical simulations obtained by the application of graph-L-systems, sequential production of descendents from each a-cell leads to the formation of a new autoreproductive cell (a), a cap columella initial (c), and two mother cells (e and f) whose respective descendents differentiate as root epidermis and cap flank cells. In this graph-L-system, there is specification of the location of sister cells with respect to the three orthogonal directions of a cuboidal. In the early stage of root cap formation, only a few rounds of these formative cell divisions by each a-cell and its four types of descendents are required to provide the basic set of cells necessary for full cap development. After the lateral root emerges from the parent root, there may be a temporary cessation of the formative divisions of the a-cells which give rise to columella initials. Columella production is then supported entirely by its own independent set of autoreproductive c-initials. At the same time, division of the autoreproductive protoderm initial cell is directed towards maintaining the cap flank and the epidermal cell files. The regulation of the types of formative division by the a-cell may be represented by means of a division counter which may be specific for a given species.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday 相似文献
4.
5.
Sunil K. Mallanna 《Developmental biology》2010,344(1):16-25
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming. 相似文献
6.
Background
Transforming growth factor beta (TGF-β) is a multipurpose cytokine, which plays a role in many cellular functions such as proliferation, differentiation, migration, apoptosis, cell adhesion and regulation of epithelial to mesenchymal transition. Despite many studies having observed the effect that TGF-β plays in colorectal cancer, its role in the colorectal stem cell population has not been widely observed.Method
This systematic review will analyse the role of TGF-β in the stem cell population of colorectal cancer.Results
The effects on the stem cell phenotype are through the downstream proteins involved in activation of the TGF-β pathway. Its involvement in the initiation of the epithelial to mesenchymal transition (EMT), the effect of colorectal invasion and metastasis regulated through the Smad protein involvement in the EMT, initiation of angiogenesis, promotion of metastasis of colorectal cancer to the liver and its ability to cross-talk with other pathways.Conclusion
TGF-β is a key player in angiogenesis, tumour growth and metastasis in colon cancer. 相似文献7.
8.
Claudio Muscari Emanuele Giordano Francesca Bonafè Marco Govoni Alice Pasini Carlo Guarnieri 《Journal of biomedical science》2013,20(1):63
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered. 相似文献
9.
10.
Lots of evidence showed that bone marrow stem cells can differentiate into cardiac myocytes so as to treat damaged hearts. However, the following studies revealed that bone marrow stem cells also produced protective effects on hearts by releasing some beneficial cytokines and suppressing inflammatory effects and so on. Therefore, we speculated that the cardiac differentiation of bone marrow stem cells did not play an important role in cardiac repair. 相似文献
11.
Stem cell research has received increasing attention due to their invaluable potentials in the clinical applications to cure degenerative diseases, genetic disorders and even cancers. A great number of studies have been conducted with an aim to elucidate the molecular mechanisms involved in the regulation of self-renewal of stem cells and the mysterious circuits guiding them to differentiate into all kinds of progenies that can replenish the cell pools. However, little effort has been made in studying the metabolic aspects of stem cells. Mitochondria play essential roles in mammalian cells in the generation of ATP, Ca2+ homeostasis, compartmentalization of biosynthetic pathways and execution of apoptosis. Considering the metabolic roles of mitochondria, they must be also critical in stem cells. This review is primarily focused on the biogenesis and bioenergetic function of mitochondria in the differentiation process and metabolic features of stem cells. In addition, the involvement of reactive oxygen species and hypoxic signals in the regulation of stem cell pluripotency and differentiation is also discussed. 相似文献
12.
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro‐environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. 相似文献
13.
Jia Wei Zheng 《Bioscience Hypotheses》2009,2(1):46-47
Hemangioma is the most common benign vascular tumor in infants and children with unknown etiology and pathogenesis. It is characterized by rapid proliferation followed by a slow involution phase. Histological analyses of infantile hemangioma (IH) in the early proliferating phase have generated a number of developmental theories suggesting an embryonic or primitive cell origin. We here hypothesize the IH may originate from multipotential stem cells. Further investigations of these hemangioma-initiating cells may improve our understanding of their function and possibly lead to novel therapeutic modalities for hemangiomas. 相似文献
14.
Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells 总被引:25,自引:0,他引:25
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma. 相似文献
15.
Gerasimou A Ramella R Brero A Boero O Sheiban I Levi R Gallo MP 《Cellular & molecular biology letters》2009,14(1):100-112
Ischemic diseases are characterized by the presence of pro-apoptotic stimuli, which initiate a cascade of processes that lead
to cell injury and death. Several molecules and events represent detectable indicators of the different stages of apoptosis.
Among these indicators is phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane,
which can be detected by annexinV (ANXA5) conjugation. This is a widely used in vivo and in vitro assay marking the early stages of apoptosis. We report here on an original method that employs PS-ANXA5 conjugation to target
stem cells to apoptotic cells. Mesenchymal stem cells (MSCs) from GFP-positive transgenic rats were biotinylated on membrane
surfaces with sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-biot) and then bound to avidin. The avidin-biotinylated
MSCs were labeled with biotin conjugated ANXA5. Bovine aortic endothelial cells (BAE-1 cells) were exposed to UVC to induce
caspasedependent apoptosis. Finally, we tested the ability of ANXA5-labeled MSCs to bind BAE-1 apoptotic cells: suspended
ANXA5-labeled MSCs were seeded for 1 hour on a monolayer of UV-treated or control BAE-1 cells. After washing, the number of
MSCs bound to BAE-1 cells was evaluated by confocal microscopy. Statistical analysis demonstrated a significant increase in
the number of MSCs tagged to apoptotic BAE-1 cells. Therefore, stem cell ANXA5 tagging via biotin-avidin bridges could be
a straightforward method of improving homing to apoptotic tissues.
A. Gerasimou, R. Ramella and A. Brero contributed equally to this paper. 相似文献
16.
Background
Notch signaling plays a critical role in multiple developmental programs and not surprisingly, the Notch pathway has also been implicated in the regulation of many adult stem cells, such as those in the intestine, skin, lungs, hematopoietic system, and muscle.Scope of review
In this review, we will first describe molecular mechanisms of Notch component modulation including recent advances in this field and introduce the fundamental principles of Notch signaling controlling cell fate decisions. We will then illustrate its important and varied functions in major stem cell model systems including: Drosophila and mammalian intestinal stem cells and mammalian skin, lung, hematopoietic and muscle stem cells.Major conclusions
The Notch receptor and its ligands are controlled by endocytic processes that regulate activation, turnover, and recycling. Glycosylation of the Notch extracellular domain has important modulatory functions on interactions with ligands and on proper receptor activity. Notch can mediate cell fate decisions including proliferation, lineage commitment, and terminal differentiation in many adult stem cell types. Certain cell fate decisions can have precise requirements for levels of Notch signaling controlled through modulatory regulation.General significance
We describe the current state of knowledge of how the Notch receptor is controlled through its interaction with ligands and how this is regulated by associated factors. The functional consequences of Notch receptor activation on cell fate decisions are discussed. We illustrate the importance of Notch's role in cell fate decisions in adult stem cells using examples from the intestine, skin, lung, blood, and muscle. This article is part of a Special Issue entitled Biochemistry of Stem Cells. 相似文献17.
18.
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal
and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks
of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system.
Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt
signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing
and adult nervous system on the level of the neural stem cell.
Funding: We wish to apologize to those whose work is not included due to the length constraints on the review. Work in the Lie lab
is supported by the European Young Investigator Award Program of the European Science Foundation and grants of the Deutsche
Forchungsgemeinschaft (LI 858/5-1), the European Union (Marie Curie Excellence Team Award and Marie Curie International Reintegration
Grant), and the Bavarian Research Network “Adult Neural Stem Cells” FORNEUROCELL. 相似文献
19.
Because of their ability to self-renew and differentiate, adult stem cells are the in vivo source for replacing cells lost on a daily basis in high turnover tissues during the life of an organism. Adult stem cells however, do suffer the effects of aging resulting in decreased ability to self-renew and properly differentiate. Aging is a complex process and identification of the mechanisms underlying the aging of (stem) cell population(s) requires that relatively homogenous and well characterized populations can be isolated. Evaluation of the effect of aging on one such adult stem cell population, namely the hematopoietic stem cell (HSC), which can be purified to near homogeneity, has demonstrate that they do suffer cell intrinsic age associated changes. The cells that support HSC, namely marrow stromal cells, or mesenchymal stem cells (MSC), may similarly be affected by aging, although the inability to purify these cells to homogeneity precludes definitive assessment. As HSC and MSC are being used in cell-based therapies clinically, improved insight in the effect of aging on these two stem cell populations will probably impact the selection of sources for these stem cells. 相似文献
20.
Chor Yong Tay Mintu Pal Nguan Soon Tan David Tai Leong 《Experimental cell research》2010,316(7):1159-922
Stem cell response can be influenced by a multitude of chemical, topological and mechanical physiochemical cues. While extensive studies have been focused on the use of soluble factors to direct stem cell differentiation, there are growing evidences illustrating the potential to modulate stem cell differentiation via precise engineering of cell shape. Fibronectin were printed on poly(lactic-co-glycolic acid) (PLGA) thin film forming spatially defined geometries as a means to control the morphology of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs that were cultured on unpatterned substrata adhered and flattened extensively (∼ 10,000 μm2) while cells grown on 20 μm micropatterend wide adhesive strips were highly elongated with much smaller area coverage of ∼ 2000 μm2. Gene expression analysis revealed up-regulation of several hallmark markers associated to neurogenesis and myogenesis for cells that were highly elongated while osteogenic markers were specifically down-regulated or remained at its nominal level. Even though there is clearly upregulated levels of both neuronal and myogenic lineages but at the functionally relevant level of protein expression, the myogenic lineage is dominant within the time scale studied as determined by the exclusive expression of cardiac myosin heavy chain for the micropatterned cells. Enforced cell shape distortion resulting in large scale rearrangement of cytoskeletal network and altered nucleus shape has been proposed as a physical impetus by which mechanical deformation is translated into biochemical response. These results demonstrated for the first time that cellular shape modulation in the absence of any induction factors may be a viable strategy to coax lineage-specific differentiation of stem cells. 相似文献