首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus thuringiensis subsp. israelensis, which is used worldwide to control Aedes aegypti larvae, produces Cry11Aa and other toxins during sporulation. In this study, pull-down assays were performed using biotinylated Cry11Aa toxin and solubilized brush border membrane vesicles prepared from midguts of Aedes larvae. Three of the eluted proteins were identified as aminopeptidease N (APN), one of which was a 140 kDa protein, named AaeAPN1 (AAEL012778 in VectorBase). This protein localizes to the apical side of posterior midgut epithelial cells of larva. The full-length AaeAPN1 was cloned and expressed in Eschericia coli and in Sf21 cells. AaeAPN1 protein expressed in Sf21 cells was enzymatically active, had a GPI-anchor but did not bind Cry11Aa. A truncated AaeAPN1, however, binds Cry11Aa with high affinity, and also Cry11Ba but with lower affinity. BBMV but not Sf21 expressed AaeAPN1 can be detected by wheat germ agglutinin suggesting the native but Sf21 cell-expressed APN1 contains N-acetylglucosamine moieties.  相似文献   

2.
3.
Bacillus thuringiensis produces insecticidal crystal (Cry) proteins which bind to cell surface receptors on the brush border membrane of susceptible midgut larvae. The toxin-receptor interaction generates pores in midgut epithelial cells resulting in cell lysis. Here, a cDNA encoding membrane-bound alkaline phosphatase from Aedes aegypti (Aa-mALP) midgut larvae, based on the sequence identity hit to Bombyx mori membrane-bound ALP, was amplified by RT-PCR and transiently expressed in Spodoptera frugiperda (Sf9) insect cells as a 58-kDa membrane-bound protein via the baculovirus expression system and confirmed by digestion with phosphatidylinositol-specific phospholipase C and LC-MS/MS analysis. Immunolocalization results showed that Cry4Ba is able to bind to only Sf9 cells-expressing Aa-mALP. Moreover, these cells were shown to undergo cell lysis in the presence of 100 ??g/ml trypsin-treated toxin. Finally, trypan blue exclusion assay also demonstrated an increase in cell death in recombinant cells treated with Cry4Ba. Overall results indicated that Aa-mALP protein was responsible for mediating Cry4Ba toxicity against Sf9 cells, suggesting its role as a receptor for Cry4Ba toxin in A. aegypti mosquito larvae.  相似文献   

4.
Bacillus thuringiensis subs. israelensis produces at least three Cry toxins (Cry4Aa, Cry4Ba, and Cry11Aa) that are active against Aedes aegypti larvae. Previous work characterized a GPI-anchored alkaline phosphatase (ALP1) as a Cry11Aa binding molecule from the gut of A. aegypti larvae. We show here that Cry4Ba binds ALP1, and that the binding and toxicity of Cry4Ba mutants located in loop 2 of domain II is correlated. Also, we analyzed the contribution of ALP1 toward the toxicity of Cry4Ba and Cry11Aa toxins by silencing the expression of this protein though RNAi. Efficient silencing of ALP1 was demonstrated by real-time quantitative PCR (qPCR) and Western blot. ALP1 silenced larvae showed tolerance to both Cry4Ba and Cry11Aa although the silenced larvae were more tolerant to Cry11Aa in comparison to Cry4Ba. Our results demonstrate that ALP1 is a functional receptor that plays an important role in the toxicity of the Cry4Ba and Cry11Aa proteins.  相似文献   

5.
刘慧  李博  牛林  邱林  王永 《生物安全学报》2018,27(4):255-259
【目的】Bt杀虫蛋白发挥杀虫活性的重要前提是Cry蛋白能够与昆虫中肠上皮细胞刷状缘膜囊(BBMVs)上的受体蛋白结合。在前期获得二化螟氨肽酶N1(Aminopeptidase N,APN1)基因全长序列的基础上,明确二化螟APN1多肽片段与Cry2Aa的结合能力。【方法】将二化螟APN1序列片段在大肠杆菌BL21(DE3)中表达,利用蛋白质单向电泳和ligand blotting技术分析二化螟APN1多肽片段与Cry2Aa的结合能力。【结果】重组载体可在表达菌株BL21(DE3)中表达一个约70 ku的蛋白,纯化后的多肽条带单一,纯度较好。Ligand blot分析结果显示,表达的二化螟APN1多肽片段可以与活化的Cry2Aa杀虫蛋白结合,且结合条带随着重组蛋白上样量的降低而减弱。【结论】APN1多肽片段可以与Cry2Aa结合,为阐明APN1基因的功能奠定基础,也为其他Bt蛋白的受体蛋白相关研究提供新的借鉴。  相似文献   

6.
Novel Bacillus thuringiensis subsp. israelensis (Bti) Cry4Ba toxin-binding proteins have been identified in gut brush border membranes of the Aedes (Stegomyia) aegypti mosquito larvae by combining 2-dimensional gel electrophoresis (2DE) and ligand blotting followed by protein identification using mass spectrometry and database searching. Three alkaline phosphatase isoforms and aminopeptidase were identified. Other Cry4Ba binding proteins identified include the putative lipid raft proteins flotillin and prohibitin, V-ATPase B subunit and actin. These identified proteins might play important roles in mediating the toxicity of Cry4Ba due to their location in the gut brush border membrane. Cadherin-type protein was not identified, although previously, we identified a midgut cadherin AgCad1 as a putative Cry4Ba receptor in Anopheles gambiae mosquito larvae [Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47, 5101–5110]. Other identified proteins in this study that might have lesser roles include mitochondrial proteins such as ATP synthase subunits, mitochondrial processing peptidase and porin; which are likely contaminants from mitochondria and are not brush border membrane components. Trypsin-like serine protease was also identified as a protein that binds Cry4Ba. Identification of these toxin-binding proteins will lead to a better understanding of the mode of action of this toxin in mosquito.  相似文献   

7.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

8.
A protein with the molecular weight of 65 kD is the only component of Aedes aegypti larvae BBM capable to specifically bind mosquitocidal toxins Cry4B and Cry11A of Bacillus thuringiensis. This protein lacks the leucine aminopeptidase activity which is characteristic for the toxin-binding proteins from the membranes of caterpillars. Cry-toxins inactive against A. aegypti larvae either fail to bind to the 65-kD protein and to a putative product of its proteolysis with the molecular weight of 62 kD (Cry1Ab), or bind but do not compete for this binding with mosquitocidal proteins (Cry9A). The proteolytic splitting out of the first five -helices in the Cry4B toxin molecule does not affect its binding to the 65- and 62-kD proteins, but an additional removal of 20-30 amino acids from the C-terminal of the molecule sharply spoils this binding. Monosaccharide residues are not involved in the binding of the 65- and 62-kD proteins with Cry4B, Cry11A, and Cry9A.  相似文献   

9.
The Cry11Aa protein produced in Bacillus thuringiensis subsp. israelensis, a bacterial strain used worldwide for the control of Aedes aegypti larvae, binds midgut brush border membrane vesicles (BBMV) with an apparent Kd of 29.8 nM. Previously an aminopeptidase N (APN), named AaeAPN2, was identified as a putative Cry11Aa toxin binding protein by pull-down assays using biotinylated Cry11Aa toxin (Chen et al., 2009. Insect Biochem. Mol. Biol. 39, 688–696). Here we show this protein localizes to the apical membrane of epithelial cells in proximal and distal regions of larval caeca. The AaeAPN2 protein binds Cry11Aa with high affinity, 8.6 nM. The full-length and fragments of AaeAPN2 were cloned and expressed in Escherichia coli. The toxin-binding region was identified and further competitive assays demonstrated that Cry11Aa binding to BBMV was efficiently competed by the full-length AaeAPN2 and the fragments of AaeAPN2b and AaeAPN2e. In bioassays against Ae. aegypti larvae, the presence of full-length and a partial fragment (AaeAPN2b) of AaeAPN2 enhanced Cry11Aa larval mortality. Taken together, we conclude that AaeAPN2 is a binding protein and plays a role in Cry11Aa toxicity.  相似文献   

10.
Aminopeptidase N (APN) isoforms were identified as candidate receptors for Bacillus thuringiensis Cry toxins from the midgut of several insect species. In this study a partial cDNA encoding aminopeptidase (slfbAPN) was cloned from fat body of the moth Spodoptera litura. In the deduced amino acid sequence the characteristic metallopeptidase sequences, HEXXHX18E and GAMENWG were conserved but the sequence showed only 33–39% identity to other insect APNs, which were also reported to be Cry toxin receptors. The presence of a putative GPI anchor signal sequence at the C-terminus indicated that it is a membrane-anchored protein. The slfbAPN expression was restricted to the fat body as suggested by northern blot analysis of different tissues. Biochemical analyses including immunoblotting, ligand blotting and lectin blotting, demonstrated that slfbAPN is a membrane-anchored glycoprotein in the fat body and it binds to Cry toxins. The nucleotide sequence shown here has been submitted to the GenBank sequence data bank and is available under accession number EF372603.  相似文献   

11.
The widely accepted model for toxicity mechanisms of the Bacillus thuringiensis Cry δ-endotoxins suggests that helices α4 and α5 form a helix-loop-helix hairpin structure to initiate membrane insertion and pore formation. In this report, alanine substitutions of two polar amino acids (Asn-166 and Tyr-170) and one charged residue (Glu-171) within the α4–α5 loop of the 130-kDa Cry4B mosquito-larvicidal protein were initially made via polymerase chain reaction-based directed mutagenesis. As with the wild-type toxin, all of the mutant proteins were highly expressed in Escherichia coli as inclusion bodies upon isopropyl-β-d-thiogalactopyranoside induction. When E. coli cells expressing each mutant toxin were assayed against Aedes aegypti mosquito larvae, the activity was almost completely abolished for N166A and Y170A mutations, whereas E171A showed only a small reduction in toxicity. Further analysis of these two critical residues by induction of specific mutations revealed that polarity at position 166 and highly conserved aromaticity at position 170 within the α4–α5 loop play a crucial role in the larvicidal activity of the Cry4B toxin.  相似文献   

12.
The cry4Ba gene from Bacillus thuringiensis subsp. israelensis and the binary toxin gene from B. sphaericus C3-41 were cloned together into a shuttle vector and expressed in an acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. Transformed strain Bt-BW611, expressing both Cry4Ba protein and binary toxin protein, was more than 40-fold more toxic to Culex pipiens larvae resistant to B. sphaericus than the transformed strains expressing Cry4Ba protein or binary toxin protein independently. This result showed that the coexpression of cry4Ba of B. thuringiensis subsp. israelensis with B. sphaericus binary toxin gene partly suppressed more than 10,000-fold resistance of C. pipiens larvae to the binary toxin. It was suggested that production of Cry4Ba protein and binary toxin protein interacted synergistically, thereby increasing their mosquito-larvicidal toxicity.  相似文献   

13.
14.
Essential oils obtained from the flowers of Dendropanax morbifera were extracted and the chemical composition and larvicidal effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC–MS) revealed that the essential oil of D. morbifera contained 27 compounds. The major chemical components identified were γ-elemene (18.59%), tetramethyltricyclohydrocarbon (10.82%), β-selinene (10.41%), α-zingibirene (10.52%), 2-isopropyl-5-methylbicylodecen (4.2%), β-cubebene (4.19), and 2,6-bis(1,1-Dimethylethyl)-4-phenol (4.01%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC50 value of 62.32 ppm and an LC90 value of 131.21 ppm. The results could be useful in search for newer, safer, and more effective natural larvicidal agents against A. aegypti.  相似文献   

15.
Bacillus thuringiensis mosquitocidal toxin Cry4Ba has no significant natural activity against Culex quinquefasciatus or Culex pipiens (50% lethal concentrations [LC50], >80,000 and >20,000 ng/ml, respectively). We introduced amino acid substitutions in three putative loops of domain II of Cry4Ba. The mutant proteins were tested on four different species of mosquitoes, Aedes aegypti, Anopheles quadrimaculatus, C. quinquefasciatus, and C. pipiens. Putative loop 1 and 2 exchanges eliminated activity towards A. aegypti and A. quadrimaculatus. Mutations in a putative loop 3 resulted in a final increase in toxicity of >700-fold and >285-fold against C. quinquefasciatus (LC50 114 ng/ml) and C. pipiens (LC50 37 ng/ml), respectively. The enhanced protein (mutein) has very little negative effect on the activity against Anopheles or Aedes. These results suggest that the introduction of short variable sequences of the loop regions from one toxin into another might provide a general rational design approach to enhancing B. thuringiensis Cry toxins.  相似文献   

16.
17.
Mtx1 and Mtx2 are mosquitocidal toxins produced by some strains of Bacillus sphaericus during vegetative phase of growth. Mtx1 from B. sphaericus 2297 shows higher toxicity against Culex quinquefasciatus larvae than to Aedes aegypti larvae whereas Mtx2 from B. sphaericus 2297 shows lower toxicity against C. quinquefasciatus than to A. aegypti larvae. To test synergism of these toxins against A. aegypti larvae, mtx1 and mtx2 genes were cloned into a single plasmid and expressed in Escherichia coli. Cells producing both Mtx1 and Mtx2 toxins exhibited high synergistic activity against A. aegypti larvae approximately 10 times compared to cells expressing only a single toxin. Co-expression of both toxins offers an alternative to improve efficacy of recombinant bacterial insecticides. There is a high possibility to develop these toxins to be used as an environmentally friendly mosquito control agent.  相似文献   

18.
Mosquitoes spread deadly infections around the world. Since decades Bacillus thuringiensis (Bt) δ-endotoxins have been used successfully as a biopesticide for controlling mosquito larvae. However, over a few years, mosquito larvae have evolved tolerance against Bt δ-endotoxins, rendering them ineffective for mosquito control. Such a problem entails the development of improved toxins with enhanced toxicity, affinity towards a wide range of mosquito receptors and ability to overcome or delay the resistance buildup. In this study, using in silico tools, we aimed to design a fusion protein by fusing active region of Bt subsp. jegathesan Cry11Ba protein with Aedes aegypti TMOF (trypsin modulating oostatic factor). Using computational study, the fusion protein was validated and its mosquitocidal potential was determined through molecular docking against cadherin and aminopeptidase N midgut receptors of Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Molecular docking revealed that from Cry11Ba-TMOF fusion protein, domain II amino acids of Cry11Ba protein showed hydrogen bond interactions with cadherin and aminopeptidase N receptors of the targeted mosquitoes. These results conclude that Cry11Ba-TMOF fusion protein has a strong affinity for the receptors of Ae.aegypti, An.gambiae and Cx.quinquefasciatus. Thus the designed fusion protein can be used as a potent mosquitocidal agent for the control of targeted mosquitoes.  相似文献   

19.
A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors.  相似文献   

20.
The lack of eye pigment in the Aedes aegypti WE (white eye) colony was confirmed to be due to a mutation in the kynurenine hydroxylase gene, which catalyzes one of the steps in the metabolic synthesis of ommochrome eye pigments. Partial restoration of eye color (orange to red phenotype) in pupae and adults occurred in both sexes when first or second instar larvae were reared in water containing 3-hydroxykynurenine, the metabolic product of the enzyme kynurenine hydroxylase. No eye color restoration was observed when larvae were reared in water containing kynurenine sulfate, the precursor of 3-hydroxykynurenine in the ommochrome synthesis pathway. In addition, a plasmid clone containing the wild type Drosophila melanogaster gene encoding kynurenine hydroxylase, cinnabar (cn), was also able to complement the kynurenine hydroxylase mutation when it was injected into embryos of the A. aegypti WE strain. The ability to complement this A. aegypti mutant with the transiently expressed D. melanogaster cinnabar gene supports the value of this gene as a transformation reporter for use with A. aegypti WE and possibly other Diptera with null mutations in the kynurenine hydroxylase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号