首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AK Kwong  CW Fung  SY Chan  VC Wong 《PloS one》2012,7(7):e41802

Background

Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study.

Objective

The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome.

Methods

A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations.

Results

Eighteen patients (9 males, 9 females) were diagnosed to have Dravet syndrome. Among them, 83% (15/18) had SCN1A mutations including truncating (7), splice site (2) and missense mutations (6). The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05). During the progression of disease, 73% (11/15) had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15) had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant.

Conclusion

A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense variant were identified in a patient with Dravet syndrome.  相似文献   

2.
Mutations in neuronal voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A may play an important role in the etiology of neurological diseases and psychiatric disorders, besides various types of epilepsy. Here we describe a 3-year-old boy with autistic features, language delay, microcephaly and no history of seizures. Array-CGH analysis revealed an interstitial deletion of ~ 291.9 kB at band 2q24.3 disrupting the entire SCN2A gene and part of SCN3A. We discuss the effects of haploinsufficiency of SCN2A and SCN3A on the genetic basis of neurodevelopmental and neurobehavioral disorders and we propose that this haploinsufficiency may be associated not only with epilepsy, but also with autistic features.  相似文献   

3.
SCN1A is the most relevant epilepsy gene. Mutations of SCN1A generate phenotypes ranging from the extremely severe form of Dravet syndrome (DS) to a mild form of generalized epilepsy with febrile seizures plus (GEFS+). Mosaic SCN1A mutations have been identified in rare familial DS. It is suspected that mosaic mutations of SCN1A may cause other types of familial epilepsies with febrile seizures (FS), which are more common clinically. Thus, we screened SCN1A mutations in 13 families with partial epilepsy with antecedent febrile seizures (PEFS+) using denaturing high-performance liquid chromatography and sequencing. The level of mosaicism was further quantified by pyrosequencing. Two missense SCN1A mutations with mosaic origin were identified in two unrelated families, accounting for 15.4% (2/13) of the PEFS+ families tested. One of the mosaic carriers with ~25.0% mutation of c.5768A>G/p.Q1923R had experienced simple FS; another with ~12.5% mutation of c.4847T>C/p.I1616T was asymptomatic. Their heterozygous children had PEFS+. Recurrent transmission occurred in both families, as noted in most of the families with germline mosaicism reported previously. The two mosaic mutations identified in this study are less destructive missense, compared with the more destructive truncating and splice-site mutations identified in the majority of previous studies. This is the first report of mosaic SCN1A mutations in families with probands that do not exhibit DS, but manifest only a milder phenotype. Therefore, such families with mild cases should be approached with caution in genetic counseling and the possibility of mosaicism origin associated with high recurrence risk should be excluded.  相似文献   

4.
Both gain- and loss-of-function mutations in the SCN5A gene, which encodes the α-subunit of the cardiac voltage-gated Na+ channel Nav1.5, are well established to underlie hereditary arrhythmic syndromes (cardiac channelopathies) such as the type 3 long QT syndrome, cardiac conduction diseases, Brugada syndrome, sick sinus syndrome, atrial standstill and numerous overlap syndromes. Although patch-clamp studies in heterologous expression systems have provided important information to understand the genotype–phenotype relationships of these diseases, they could not clarify how mutations can be responsible for such a large spectrum of diseases, the late age of onset or the progressiveness of some of them, and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological sequence of cardiac SCN5A-related channelopathies and several mouse models have been established. Here, we review the results obtained on these models that, for most of them, convincingly recapitulate the clinical phenotypes of the patients but that also have their own limitations. Mouse models turn out to be powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the cellular consequences of SCN5A mutations such as the remodelling of other gene expression that might participate in the overall phenotype and explain some of the differences among patients. Finally, they also constitute useful tools for future studies addressing as yet unanswered questions, such as the role of genetic and environmental modifiers on cardiac conduction and repolarisation.  相似文献   

5.
Interaction between killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands influences the innate and adaptive immune response to infection. The KIR family varies in gene content and allelic polymorphism, thereby, distinguishing individuals and populations. KIR gene content was determined for 230 individuals from three Amerindian tribes from Venezuela: the Yucpa, Bari and Warao. Gene-content haplotypes could be assigned to 212 individuals (92%) because only five different haplotypes were present—group A and four group B. Six different haplotype combinations accounted for >80% of individuals. Each tribe has distinctive genotype frequencies. Despite few haplotypes, all 14 KIR genes are at high frequency in the three tribes, with the exception of 2DS3. Each population has an even frequency of group A and B haplotypes. Allele-level analysis of 3DL1/S1 distinguished five group A haplotypes and six group B haplotypes. The high frequency and divergence of the KIR haplotypes in the Amerindian tribes provide greater KIR diversity than is present in many larger populations. An extreme case being the Yucpa, for whom two gene-content haplotypes account for >90% of the population. These comprise the group A haplotype and a group B haplotype containing all the KIR genes, except 2DS3, that typify the group B haplotypes. Here is clear evidence for balancing selection on the KIR system and the biological importance of both A and B haplotypes for the survival of human populations.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
To investigate the possible correlation between genotype and phenotype of epilepsy, we analyzed the voltage-gated sodium channel alpha1-subunit (SCN1A) gene, beta1-subunit (SCN1B) gene, and gamma-aminobutyric acid(A) receptor gamma2-subunit (GABRG2) gene in DNAs from peripheral blood cells of 29 patients with severe myoclonic epilepsy in infancy (SME) and 11 patients with other types of epilepsy. Mutations of the SCN1A gene were detected in 24 of the 29 patients (82.7%) with SME, although none with other types of epilepsy. The mutations included deletion, insertion, missense, and nonsense mutations. We could not find any mutations of the SCN1B and GABRG2 genes in all patients. Our data suggested that the SCN1A mutations were significantly correlated with SME (p<.0001). As we could not find SCN1A mutations in their parents, one of critical causes of SME may be de novo mutation of the SCN1A gene occurred in the course of meiosis in the parents.  相似文献   

7.
SCN4A encodes the Nav1.4 channel and mutations in SCN4A lead to different ionic channelopathies. In this study, one sporadic individual of periodic paralysis, one paramyotonia family and 200 normal healthy controls are enrolled. Genomic DNA was extracted from peripheral blood leukocytes, followed by polymerase chain reaction and DNA sequencing of candidate genes, including SCN4A and CACNA1S. As a result, heterozygous mutations c.2024G>A (R675Q) and c.1333G>A (V445M) of gene SCN4A were identified in the hypokalemic periodic paralysis patient and the paramyotonia congenita family respectively. Both mutations were not detected in healthy controls. Compared with reported cases, patients with mutation R675Q usually do not present hypokalemic periodic paralysis but hyperkalemic or normokalemic periodic paralysis. The mutation V445M was first reported in Chinese patients with nondystrophic myotonias. In addition, we carried out literature review by summarizing clinical features of the 2 mutations and establish the genotype–phenotype correlations to provide guidance for diagnosis.  相似文献   

8.
SCN4A encodes the Nav1.4 channel and mutations in SCN4A lead to different ionic channelopathies. In this study, one sporadic individual of periodic paralysis, one paramyotonia family and 200 normal healthy controls are enrolled. Genomic DNA was extracted from peripheral blood leukocytes, followed by polymerase chain reaction and DNA sequencing of candidate genes, including SCN4A and CACNA1S. As a result, heterozygous mutations c.2024G>A (R675Q) and c.1333G>A (V445M) of gene SCN4A were identified in the hypokalemic periodic paralysis patient and the paramyotonia congenita family respectively. Both mutations were not detected in healthy controls. Compared with reported cases, patients with mutation R675Q usually do not present hypokalemic periodic paralysis but hyperkalemic or normokalemic periodic paralysis. The mutation V445M was first reported in Chinese patients with nondystrophic myotonias. In addition, we carried out literature review by summarizing clinical features of the 2 mutations and establish the genotype–phenotype correlations to provide guidance for diagnosis.  相似文献   

9.
Mutations in the voltage‐gated sodium channel gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition, dysfunction in SCN1A is increasingly being linked to neuropsychiatric abnormalities, social deficits and cognitive disabilities. We have previously reported that mice heterozygous for the SCN1A R1648H mutation identified in a GEFS+ family have infrequent spontaneous seizures, increased susceptibility to chemically and hyperthermia‐induced generalized seizures and sleep abnormalities. In this study, we characterized the behavior of heterozygous mice expressing the SCN1A R1648H mutation (Scn1aRH/+) and the effect of stress on spontaneous and induced seizures. We also examined the effect of the R1648H mutation on the hypothalamic–pituitary–adrenal (HPA) axis response. We confirmed our previous finding that Scn1aRH/+ mutants are hyperactive, and also identified deficits in social behavior, spatial memory, cued fear conditioning, pre‐pulse inhibition and risk assessment. Furthermore, while exposure to a stressor did increase seizure susceptibility, the effect seen in the Scn1aRH/+ mutants was similar to that seen in wild‐type littermates. In addition, Scn1a dysfunction does not appear to alter HPA axis function in adult animals. Our results suggest that the behavioral abnormalities associated with Scn1a dysfunction encompass a wider range of phenotypes than previously reported and factors such as stress exposure may alter disease severity in patients with SCN1A mutations.  相似文献   

10.
Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),7 severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1aRH/RH mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1aRH/+ heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1aRH/+ and Scn1aRH/RH mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.  相似文献   

11.
12.
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage‐gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage‐gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss‐of‐function mutations in SCN1A result in Dravet syndrome, a severe infant‐onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a+/?) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a+/? mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a+/? mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a+/? mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a+/? mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA‐seq analysis of strain‐dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a+/? mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.  相似文献   

13.
Genetic Na channelopathies and sinus node dysfunction   总被引:1,自引:1,他引:0  
Voltage-gated Na+ channels are transmembrane proteins that produce the fast inward Na+ current responsible for the depolarization phase of the cardiac action potential. They play fundamental roles in the initiation, propagation, and maintenance of normal cardiac rhythm. Inherited mutations in SCN5A, the gene encoding the pore-forming α-subunit of the cardiac-type Na+ channel, result in a spectrum of disease entities termed Na+ channelopathies. These include multiple arrhythmic syndromes, such as the long QT syndrome type 3 (LQT3), Brugada syndrome (BrS), an inherited cardiac conduction defect (CCD), sudden infant death syndrome (SIDS) and sick sinus syndrome (SSS). To date, mutational analyses have revealed more than 200 distinct mutations in SCN5A, of which at least 20 mutations are associated with sinus node dysfunction including SSS. This review summarizes recent findings bearing upon: (i) the functional role of distinct voltage-gated Na+ currents in sino-atrial node pacemaker function; (ii) genetic Na+ channelopathy and its relationship to sinus node dysfunction.  相似文献   

14.
Summary Bacteriophage P2 normally requires the products of its early genes A and B for lytic growth in its host, Escherichia coli C. A host mutation, sub-1, which allows P2 to grow without a functional B gene product is described. The sub-1 mutation is recessive and maps at approximately 10 min on the E. coli genetic map.  相似文献   

15.
High-frequency action potentials are mediated by voltage-gated sodium channels, composed of one large α subunit and two small β subunits, encoded mainly by SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B genes in the brain. These play a key role in epilepsy, with the most commonly mutated gene in epilepsy being SCN1A. We examined whether polymorphisms in the above genes affect epilepsy risk in 1,529 epilepsy patients and 1,935 controls from four ethnicities or locations: Malay, Indian, and Chinese, all from Malaysia, and Chinese from Hong Kong. Of patients, 19 % were idiopathic, 42 % symptomatic, and 40 % cryptogenic. We genotyped 43 polymorphisms: 27 in Hong Kong, 28 in Malaysia, and 12 in both locations. The strongest association with epilepsy was rs3812718, or SCN1A IVS5N+5G>A: odds ratio (OR) = 0.85 for allele G (p = 0.0009) and 0.73 for genotype GG versus AA (p = 0.003). The OR was between 0.76 and 0.87 for all ethnicities. Meta-analysis confirmed the association (OR = 0.81 and p = 0.002 for G, and OR = 0.67 and p = 0.007 for GG versus AA), which appeared particularly strong for Indians and for febrile seizures. Allele G affects splicing and speeds recovery from inactivation. Since SCN1A is preferentially expressed in inhibitory neurons, G may decrease epilepsy risk. SCN1A rs10188577 displayed OR = 1.20 for allele C (p = 0.003); SCN2A rs12467383 had OR = 1.16 for allele A (p = 0.01), and displayed linkage disequilibrium with rs2082366 (r 2 = 0.67), whose genotypes tended toward association with SCN2A brain expression (p = 0.10). SCN1A rs2298771 was associated in Indians (OR = 0.56, p = 0.005) and SCN2B rs602594 with idiopathic epilepsy (OR = 0.62, p = 0.002). Therefore, sodium channel polymorphisms are associated with epilepsy.  相似文献   

16.
摘要 目的:总结并分析SCN2A基因突变引起的儿童神经系统疾病相关表型谱特点。方法:采用回顾性研究,收集2018年6月至2021年6月在上海交通大学医学院附属上海儿童医学中心神经内科诊治的患儿,并经二代基因测序检测,纳入SCN2A基因突变者,研究并总结患儿神经系统临床表型特点。结果:共纳入13例SCN2A突变患儿,包括新生突变9例和遗传性突变4例。其中11例患儿伴有癫痫发作,发作年龄为1日龄~1岁11月龄,4例在新生儿期起病 (36%),1~3 月龄起病2例(18%),4~12月龄起病2例(18%),1岁后起病3例(27%);发作类型中强直阵挛发作、痉挛发作、局灶性发作均各有4例(36%),阵挛发作1例(9%)。另有2例无癫痫发作的患儿,1例表现为全面性发育迟缓,另一例表现为发育迟缓合并孤独症谱系疾病。11例癫痫患儿中,丛集性发作患儿10例。遗传性突变4例患儿中2例智力、运动发育正常;9例新生突变的患儿中8例伴有运动、智力发育落后,1例发育正常。11例癫痫患儿表型中良性家族性新生儿癫痫1例,新生儿惊厥2例,婴儿痉挛症2例,不能分类的早发性癫痫性脑病3例,儿童期起病的癫痫性脑病2例,热厥附加症1例。结论:SCN2A基因突变引起的儿童神经系统疾病以癫痫表现居多、癫痫表型谱广,少数表现为不伴癫痫发作的发育迟缓和孤独症谱系疾病。  相似文献   

17.
Summary Fruiting in the basidiomycete Schizophyllum commune readily occurs in a homokaryon with constitutive mutations in both the A and B mating-type genes. Such a homokaryon frequently expresses a mutation, fbf, which completely blocks fruiting and leads to a somewhat faster growth rate. The mutation is unlinked to the A and B genes, frequently reverts to its wild-type allele, and is recessive with respect to fruiting in matings with wild-type homokaryons. The mutation suppresses the accumulation of a number of mRNAs which are regulated by the mating-types genes and are specific for fruiting. The expression of the Sc-3 gene, structurally related to two of the fruiting genes (Sc-1 and Sc-4) but not regulated by the mating-type genes, is unaffected.  相似文献   

18.
Dravet syndrome (DS) is one of the most pharmacoresistant and devastating forms of childhood epilepsy syndromes. Distinct de novo mutations in the SCN1A gene are responsible for over 80% of DS cases. While DS is largely resistant to treatment with existing anti-epileptic drugs, promising results have been obtained in clinical trials with human patients treated with the serotonin agonist fenfluramine as an add-on therapeutic. We developed a zebrafish model of DS using morpholino antisense oligomers (MOs) targeting scn1Lab, the zebrafish ortholog of SCN1A. Zebrafish larvae with an antisense knockdown of scn1Lab (scn1Lab morphants) were characterized by automated behavioral tracking and high-resolution video imaging, in addition to measuring brain activity through local field potential recordings. Our findings reveal that scn1Lab morphants display hyperactivity, convulsive seizure-like behavior, loss of posture, repetitive jerking and a myoclonic seizure-like pattern. The occurrence of spontaneous seizures was confirmed by local field potential recordings of the forebrain, measuring epileptiform discharges. Furthermore, we show that these larvae are remarkably sensitive to hyperthermia, similar to what has been described for mouse models of DS, as well as for human DS patients. Pharmacological evaluation revealed that sodium valproate and fenfluramine significantly reduce epileptiform discharges in scn1Lab morphants. Our findings for this zebrafish model of DS are in accordance with clinical data for human DS patients. To our knowledge, this is the first study demonstrating effective seizure inhibition of fenfluramine in an animal model of Dravet syndrome. Moreover, these results provide a basis for identifying novel analogs with improved activity and significantly milder or no side effects.  相似文献   

19.

Objective

Dravet syndrome is a severe form of intractable pediatric epilepsy with a high incidence of SUDEP: Sudden Unexpected Death in epilepsy. Cardiac arrhythmias are a proposed cause for some cases of SUDEP, yet the susceptibility and potential mechanism of arrhythmogenesis in Dravet syndrome remain unknown. The majority of Dravet syndrome patients have de novo mutations in SCN1A, resulting in haploinsufficiency. We propose that, in addition to neuronal hyperexcitability, SCN1A haploinsufficiency alters cardiac electrical function and produces arrhythmias, providing a potential mechanism for SUDEP.

Methods

Postnatal day 15-21 heterozygous SCN1A-R1407X knock-in mice, expressing a human Dravet syndrome mutation, were used to investigate a possible cardiac phenotype. A combination of single cell electrophysiology and in vivo electrocardiogram (ECG) recordings were performed.

Results

We observed a 2-fold increase in both transient and persistent Na+ current density in isolated Dravet syndrome ventricular myocytes that resulted from increased activity of a tetrodotoxin-resistant Na+ current, likely Nav1.5. Dravet syndrome myocytes exhibited increased excitability, action potential duration prolongation, and triggered activity. Continuous radiotelemetric ECG recordings showed QT prolongation, ventricular ectopic foci, idioventricular rhythms, beat-to-beat variability, ventricular fibrillation, and focal bradycardia. Spontaneous deaths were recorded in 2 DS mice, and a third became moribund and required euthanasia.

Interpretation

These data from single cell and whole animal experiments suggest that altered cardiac electrical function in Dravet syndrome may contribute to the susceptibility for arrhythmogenesis and SUDEP. These mechanistic insights may lead to critical risk assessment and intervention in human patients.  相似文献   

20.
BackgroundLong QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardiogram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1–3 constitute about 75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave morphology and triggering factors to prioritize the gene to be tested. We sought to identify the causative mutations and mutation spectrum, perform genotype-phenotype correlation and screen family members.MethodsThirty patients who fulfilled the criteria were enrolled. The most probable candidate gene among KCNQ1, KCNH2 and SCN5A were sequenced.ResultsOf the 30 patients, 22 were classified at LQT1, two as LQT2 and six as LQT3. Mutations in KCNQ1 were identified in 17 (77%) of 22 LQT1 patients, KCNH2 mutation in one of two LQT2 and SCN5A mutations in two of six LQT3 patients. We correlated the presence of the specific ECG morphology in all mutation positive cases. Eight mutations in KCNQ1 and one in SCN5A were novel and predicted to be pathogenic by in-silico analysis. Of all parents with heterozygous mutations, 24 (92%) of 26 were asymptomatic. Ten available siblings of nine probands were screened and three were homozygous and symptomatic, five heterozygous and asymptomatic.ConclusionsThis study in a cohort of Asian Indian patients highlights the mutation spectrum of common Long QT syndromes. The clinical utility for prevention of unexplained sudden cardiac deaths is an important sequel to identification of the mutation in at-risk family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号