首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
DGCR8 (DiGeorge syndrome critical region gene 8) is essential for primary microRNA (pri-miRNA) processing in the cell nucleus. It specifically combines with Drosha, a nuclear RNase III enzyme, to form the Microprocessor complex (MC) that cleaves pri-miRNA to precursor miRNA (pre-miRNA), which is further processed to mature miRNA by Dicer, a cytoplasmic RNase III enzyme. Increasing evidences suggest that pri-/pre-miRNAs have direct functions in regulation of gene expression, however the underlying mechanism how it is fine-tuned remains unclear. Here we find that DGCR8 is modified by SUMO1 at the major site K707, which can be promoted by its ERK-activated phosphorylation. SUMOylation of DGCR8 enhances the protein stability by preventing the degradation via the ubiquitin proteasome pathway. More importantly, SUMOylation of DGCR8 does not alter its association with Drosha, the MC activity and miRNA biogenesis, but rather influences its affinity with pri-miRNAs. This altered affinity of DGCR8 with pri-miRNAs seems to control the direct functions of pri-miRNAs in recognition and repression of the target mRNAs, which is evidently linked to the DGCR8 function in regulation of tumorigenesis and cell migration. Collectively, our data suggest a novel mechanism that SUMOylation of DGCR8 controls direct functions of pri-miRNAs in gene silencing.  相似文献   

10.
A canonical biogenesis pathway involving sequential cleavage by the Drosha and Dicer RNAse III enzymes governs the maturation of most animal microRNAs. However, there exist a variety of alternative miRNA biogenesis pathways, most of which bypass Drosha processing. Recently, three groups described for the first time a vertebrate microRNA pathway that bypasses Dicer cleavage. This mechanism was characterized with respect to the highly conserved vertebrate gene mir-451, for which Drosha processing yields a short (42 nucleotide) hairpin that is directly loaded into Ago2, the sole vertebrate "Slicer" Argonaute. Ago2-mediated cleavage of this hairpin yields a 30 nucleotide intermediate, whose 3' end is resected to generate the dominantly cloned ~23 nucleotide mature miR-451. Knowledge of this pathway provides an unprecedented tool with which to express microRNAs and small interfering RNAs in Dicer mutant cells. More generally, the mir-451 backbone constitutes a new platform for gene silencing that complements existing shRNA technology.  相似文献   

11.
MicroRNAs (miRNA) are endogenous, short, non-coding RNA that undergo a multistep biogenesis before generating the functional, mature sequence. The core components of the microprocessor complex, consisting of Drosha and DGCR8, are both necessary and sufficient for this process, although accessory proteins have been found that modulate the biogenesis of a subset of miRNA. Curiously, many of the proteins involved in miRNA biogenesis are also needed for ribosomal RNA processing. Here we show that nucleolin, another protein critical for rRNA processing, is involved in the biogenesis of microRNA 15a/16 (miR-15a/16), specifically at the primary to precursor stage of processing. Through overexpression and knockdown studies, we show that miR-15a/16 levels are directly correlated to nucleolin expression. Furthermore, we found that cellular localization is critical for the proper functioning of nucleolin in this pathway and that nucleolin directly interacts with DGCR8 and Drosha in the nucleus. Nucleolin can bind to the primary miRNA both directly and specifically. Finally, we show that in the absence of nucleolin, cell extracts are unable to process miR-15a/16 in vitro and that this can be rescued by the addition of nucleolin. Our findings offer a new protein component in the microRNA biogenesis pathway and lend insight into miRNA dysregulation in certain cancers.  相似文献   

12.
Terminal loop-mediated control of microRNA biogenesis   总被引:1,自引:0,他引:1  
Regulation of miRNA (microRNA) biogenesis shapes the profiles of miRNAs in the living cell, contributing to cell identity and function. Importantly, aberrant miRNA levels have been linked to a variety of human pathological states. In recent years, a number of proteins have been shown to regulate the miRNA biogenesis at the level of Drosha and Dicer cleavage. A large proportion of these factors regulate miRNA production through binding to the TL (terminal loop) regions of miRNA progenitors. In the present paper, we review the current knowledge about pri-miRNA (primary miRNA) and pre-miRNA (precursor miRNA) TL involvement in the regulation of miRNA biogenesis.  相似文献   

13.
14.
15.
16.
miRNA biogenesis enzyme Drosha cleaves double-stranded primary miRNA by interacting with double-stranded RNA binding protein DGCR8 and processes primary miRNA into precursor miRNA to participate in the miRNA biogenesis pathway. The role of Drosha in vascular smooth muscle cells (VSMCs) has not been well addressed. We generated Drosha conditional knockout (cKO) mice by crossing VSMC-specific Cre mice, SM22-Cre, with Drosha loxp/loxp mice. Disruption of Drosha in VSMCs resulted in embryonic lethality at E14.5 with severe liver hemorrhage in mutant embryos. No obvious developmental delay was observed in Drosha cKO embryos. The vascular structure was absent in the yolk sac of Drosha homozygotes at E14.5. Loss of Drosha reduced VSMC proliferation in vitro and in vivo. The VSMC differentiation marker genes, including αSMA, SM22, and CNN1, and endothelial cell marker CD31 were significantly downregulated in Drosha cKO mice compared to controls. ERK1/2 mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/AKT were attenuated in VSMCs in vitro and in vivo. Disruption of Drosha in VSMCs of mice leads to the dysregulation of miRNA expression. Using bioinformatics approach, the interactions between dysregulated miRNAs and their target genes were analyzed. Our data demonstrated that Drosha is required for VSMC survival by targeting multiple signaling pathways.  相似文献   

17.
18.
19.
Processing of intronic microRNAs   总被引:9,自引:0,他引:9  
Kim YK  Kim VN 《The EMBO journal》2007,26(3):775-783
  相似文献   

20.
Processing of primary microRNA (pri-miRNA) stem–loops by the Drosha–DGCR8 complex is the initial step in miRNA maturation and crucial for miRNA function. Nonetheless, the underlying mechanism that determines the Drosha cleavage site of pri-miRNAs has remained unclear. Two prevalent but seemingly conflicting models propose that Drosha–DGCR8 anchors to and directs cleavage a fixed distance from either the basal single-stranded (ssRNA) or the terminal loop. However, recent studies suggest that the basal ssRNA and/or the terminal loop may influence the Drosha cleavage site dependent upon the sequence/structure of individual pri-miRNAs. Here, using a panel of closely related pri-miRNA variants, we further examine the role of pri-miRNA structures on Drosha cleavage site selection in cells. Our data reveal that both the basal ssRNA and terminal loop influence the Drosha cleavage site within three pri-miRNAs, the Simian Virus 40 (SV40) pri-miRNA, pri-miR-30a, and pri-miR-16. In addition to the flanking ssRNA regions, we show that an internal loop within the SV40 pri-miRNA stem strongly influences Drosha cleavage position and efficiency. We further demonstrate that the positions of the internal loop, basal ssRNA, and the terminal loop of the SV40 pri-miRNA cooperatively coordinate Drosha cleavage position and efficiency. Based on these observations, we propose that the pri-miRNA stem, defined by internal and flanking structural elements, guides the binding position of Drosha–DGCR8, which consequently determines the cleavage site. This study provides mechanistic insight into pri-miRNA processing in cells that has numerous biological implications and will assist in refining Drosha-dependent shRNA design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号