首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian tooth development relies heavily on the reciprocal and sequential interactions between cranial neural crest-derived mesenchymal cells and stomadial epithelium. During mouse tooth development, odontogenic potential, that is, the capability to direct an adjacent tissue to form a tooth, resides in dental epithelium initially, and shifts subsequently to dental mesenchyme. Recent studies have shown that mouse embryonic dental epithelium possessing odontogenic potential is able to induce the formation of a bioengineered tooth crown when confronted with postnatal mesenchymal stem cells of various sources. Despite many attempts, however, postnatal stem cells have not been used successfully as the epithelial component in the generation of a bioengineered tooth. We show here that epithelial sheets of cultured human keratinocytes, when recombined with mouse embryonic dental mesenchyme, are able to support tooth formation. Most significantly, human keratinocytes, recombined with mouse embryonic dental mesenchyme in the presence of exogenous FGF8, are induced to express the dental epithelial marker PITX2 and differentiate into enamel-secreting ameloblasts that develop a human-mouse chimeric whole tooth crown. We conclude that in the presence of appropriate odontogenic signals, human keratinocytes can be induced to become odontogenic competent; and that these are capable of participating in tooth crown morphogenesis and differentiating into ameloblasts. Our studies identify human keratinocytes as a potential cell source for in vitro generation of bioengineered teeth that may be used in replacement therapy.  相似文献   

2.
The final shape of the molar tooth crown is thought to be regulated by the transient epithelial signaling centers in the cusp tips, the secondary enamel knots (SEKs), which are believed to disappear after initiation of the cusp growth. We investigated the developmental fate of the signaling center using the recently characterized Slit1 enamel knot marker as a lineage tracer during morphogenesis of the first molar and crown calcification in the mouse. In situ hybridization analysis showed that after Fgf4 downregulation in the SEK, Slit1 expression persisted in the deep compartment of the knot. After the histological disappearance of the SEK, Slit1 expression was evident in a novel epithelial cell cluster, which we call the tertiary enamel knot (TEK) next to the enamel-free area (EFA)-epithelium at the cusp tips. In embryonic tooth, Slit1 was also observed in the stratum intermedium (SI) and stellate reticulum cells between the parallel SEKs correlating to the area where the inner enamel epithelium cells do not proliferate. After birth, the expression of Slit1 persisted in the SI cells of the transverse connecting lophs of the parallel cusps above the EFA-cells. These results demonstrate the presence of a novel putative signaling center, the TEK, in the calcifying tooth. Moreover, our results suggest that Slit1 signaling may be involved in the regulation of molar tooth shape by regulating epithelial cell proliferation and formation of EFA of the crown.  相似文献   

3.
4.
5.
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.  相似文献   

6.
In tooth development, the oral ectoderm and mesenchyme coordinately and reciprocally interact through the basement membrane for their growth and differentiation to form the proper shape and size of the tooth. Laminin alpha5 subunit-containing laminin-10/11 (LM-511/521) is the major laminin in the tooth germ basement membrane. Here, we have examined the role of laminin alpha5 (Lama5) in tooth development using laminin alpha5-null mouse primary dental epithelium and tooth germ organ cultures. Lama5-null mice develop a small tooth germ with defective cusp formation and have reduced proliferation of dental epithelium. Also, cell polarity and formation of the monolayer of the inner dental epithelium are disturbed. The enamel knot, a signaling center for tooth germ development, is defective, and there is a significant reduction of Shh and Fgf4 expression in the dental epithelium. In the absence of laminin alpha5, the basement membrane in the inner dental epithelium becomes discontinuous. In normal mice, integrin alpha6beta4, a receptor for laminin alpha5, is strongly localized at the basal layer of the epithelium, whereas in mutant mice, integrin alpha6beta4 is expressed around the cell surface. In primary dental epithelium culture, laminin-10/11 promotes cell growth, spreading, and filopodia-like microspike formation. This promotion is inhibited by anti-integrin alpha6 and beta4 antibodies and by phosphatidylinositol 3-kinase inhibitors and dominant negative Rho-GTPase family proteins Cdc42 and Rac. In organ culture, anti-integrin alpha6 antibody and wortmannin reduce tooth germ size and shape. Our studies demonstrate that laminin alpha5 is required for the proliferation and polarity of basal epithelial cells and suggest that the interaction between laminin-10/11-integrin alpha6beta4 and the phosphatidylinositol 3-kinase-Cdc42/Rac pathways play an important role in determining the size and shape of tooth germ.  相似文献   

7.
We have previously demonstrated that tooth size is determined by dental mesenchymal factors. Exogenous bone morphogenetic protein (BMP)4, Noggin, fibroblast growth factor (FGF)3 and FGF10 have no effect on tooth size, despite the expressions of Bmp2, Bmp4, Fgf3, Fgf10 and Lef1 in the dental mesenchyme. Among the wingless (Wnt) genes that are differentially expressed during tooth development, only Wnt5a is expressed in the dental mesenchyme. The aims of the present study were to clarify the expression pattern of Wnt5a in developing tooth germs and the role of Wnt5a in the regulation of tooth size by treatment with exogenous WNT5A with/without an apoptosis inhibitor on in vitro tooth germs combined with transplantation into kidney capsules. Wnt5a was intensely expressed in both the dental epithelium and mesenchyme during embryonic days 14–17, overlapping partly with the expressions of both Shh and Bmp4. Moreover, WNT5A retarded the development of tooth germs by markedly inducing cell death in the non-dental epithelium and mesenchyme but not widely in the dental region, where the epithelial–mesenchymal gene interactions among Wnt5a, Fgf10, Bmp4 and Shh might partly rescue the cells from death in the WNT5A-treated tooth germ. Together, these results indicate that WNT5A-induced cell death inhibited the overall development of the tooth germ, resulting in smaller teeth with blunter cusps after tooth-germ transplantation. Thus, it is suggested that Wnt5a is involved in regulating cell death in non-dental regions, while in the dental region it acts as a regulator of other genes that rescue tooth germs from cell death.  相似文献   

8.
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.  相似文献   

9.
The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot.  相似文献   

10.
The present study attempted to examine whether clonal cell lines of the oral epithelium can differentiate into ameloblasts and regenerate tooth when combined with dental germ mesenchyme. Clonal cell lines with a distinct morphology were established from the oral epithelium of p53-deficient fetal mice at embryonic day 18 (E18). The strain of mouse is shown to be a useful source for establishing clonal and immortalized cell lines from various tissues and at various stages of development. Tooth morphogenesis is almost completed and the oral epithelium is segregated from the dental epithelium at E18. In RT-PCR analysis of cell lines, mucosal epithelial markers (cytokeratin 14) were detected, but ameloblast markers such as amelogenin and ameloblastin were not detected when cells were cultured on plastic dish. They formed stratified epithelia and expressed a specific differentiation marker (CK13) in the upper layer when cultured on feeder layer or on collagen gel for 1–3 wk, demonstrating that they are of oral mucosa origin. Next, bioengineered tooth germs were prepared with cell lines and fetal molar mesenchymal tissues and implanted under kidney capsule for 2–3 wk. Five among six cell lines regenerated calcified structures as seen in natural tooth. Our results indicate that some oral epithelial cells at E18 possess the capability to differentiate into ameloblasts. Furthermore, cell lines established in the present study are useful models to study processes in tooth organogenesis and tooth regeneration.  相似文献   

11.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

12.
13.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

14.
Epithelial appendages on palatal rugae develop during mouse palatogenesis through epithelial thickening and pattern formation. Recently, the patterned formation of nine rugae was observed together with the specific expression patterns of Shh in rodents. However, no crucial evidence was found for a direct association between Shh expression and the distinct structural formation of rugae. In order to reveal possible relationships, we investigated the morphological changes of rugae and expression patterns of Shh directly by in vitro organ culture at embryonic day 13 (E13) for 2 days. To compare and examine the diverse growing aspects of the palate and rugae, we carefully observed the detailed morphogenesis, with cell proliferation of the rugae occurring between E13 and E14.5. After 2 days of cultivation at E13, DiI micro-injections revealed that the middle part of the palate, adjacent to the upper molar-forming region, contributed to the formation of the subsequent structure of rugae by extensive cell rearrangement and proliferation within the epithelium in the preferred anteroposterior direction. The results also defined the intimate relationship between Shh expression and rugae formation.  相似文献   

15.
Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.  相似文献   

16.
We have studied the expression patterns of the newly isolated homeobox gene, Hox-8 by in situ hybridisation to sections of the developing heads of mouse embryos between E9 and E17.5, and compared them to Hox-7 expression patterns in adjacent sections. This paper concentrates on the interesting expression patterns of Hox-8 during initiation and development of the molar and incisor teeth. Hox-8 expression domains are present in the neural crest-derived mesenchyme beneath sites of future tooth formation, in a proximo-distal gradient. Tooth development is initiated in the oral epithelium which subsequently thickens in discrete sites and invaginates to form the dental lamina. Hox-8 expression in mouse oral epithelium is first evident at the sites of the dental placodes, suggesting a role in the specification of tooth position. Subsequently, in molar teeth, this patch of Hox-8 expressing epithelium becomes incorporated within the buccal aspect of the invaginating dental lamina to form part of the external enamel epithelium of the cap stage tooth germ. This locus of Hox-8 expression becomes continuous with new sites of Hox-8 expression in the enamel navel, septum, knot and internal enamel epithelium. The transitory enamel knot, septum and navel were postulated, long ago, to be involved in specifying tooth shape, causing the inflection of the first buccal cusp, but this theory has been largely ignored. Interestingly, in the conical incisor teeth, the enamel navel, septum and knot are absent, and Hox-8 has a symmetrical expression pattern. Our demonstration of the precise expression patterns of Hox-8 in the early dental placodes and their subsequent association with the enamel knot, septum and navel provide the first molecular clues to the basis of patterning in the dentition and the association of tooth position with tooth shape: an association all the more intriguing in view of the evolutionary robustness of the patterning mechanism, and the known role of homeobox genes in Drosophila pattern formation. At the bell stage of tooth development, Hox-8 expression switches tissue layers, being absent from the differentiating epithelial ameloblasts and turned on in the differentiating mesenchymal odontoblasts. Hox-7 is expressed in the mesenchyme of the dental papilla and follicle at all stages. This reciprocity of expression suggests an interactive role between Hox-7, Hox-8 and other genes in regulating epithelial mesenchymal interactions during dental differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Reiterative signaling and patterning during mammalian tooth morphogenesis   总被引:47,自引:0,他引:47  
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.  相似文献   

18.
In rodents, a circumvallate papilla (CVP) develops with dynamic changes in epithelial morphogenesis during early tongue development. Molecular and cellular studies of CVP development revealed that there would be two different mechanisms in the apex and the trench wall forming regions with specific expression patterns of Wnt11 and Shh. Molecular interactions were examined using in vitro organ culture with over-expression of Shh, important signalling molecules and various inhibitors revealed that there are two significant different mechanisms in CVP formation by Wnt11 and Shh expressions. Wnt, a well known key molecule to initiate taste papillae, would govern Rho activation and cytoskeleton formation in the apex epithelium of CVP. In contrast, Shh regulates the cell proliferation to differentiate taste buds and to invaginate the epithelium for development of von Ebner's gland (VEG). Based on these results, we suggest that these different molecular signalling cascades of Wnt11 and Shh would play crucial roles in specific morphogenesis and pattern formation of CVP during early mouse embryo development.  相似文献   

19.
Rodents have a toothless diastema region between the incisor and molar teeth which may contain rudimentary tooth germs. We found in upper diastema region of the mouse (Mus musculus) three small tooth germs which developed into early bud stage before their apoptotic removal, while the sibling vole (Microtus rossiaemeridionalis) had only a single but larger tooth germ in this region, and this developed into late bud stage before regressing apoptotically. To analyze the genetic mechanisms of the developmental arrest of the rudimentary tooth germs we compared the expression patterns of several developmental regulatory genes (Bmp2, Bmp4, Fgf4, Fgf8, Lef1, Msx1, Msx2, p21, Pitx2, Pax9 and Shh) between molars and diastema buds of mice and voles. In diastema tooth buds the expression of all the genes differed from that of molars. The gene expression patterns suggest that the odontogenic program consists of partially independent signaling cascades which define the exact location of the tooth germ, initiate epithelial budding, and transfer the odontogenic potential from the epithelium to the underlying mesenchyma. Although the diastema regions of the two species differed, in both species the earliest difference that we found was weaker expression of mesenchymal Pax9 in the diastema region than in molar and incisor regions at the dental lamina stage. However, based on earlier tissue recombination experiments it is conceivable that the developmental arrest is determined by the early oral epithelium. Received: 1 February 1999 / Accepted: 30 March 1999  相似文献   

20.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号