首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-18 (IL-18) is a proinflammatory cytokine with multiple biological functions. We and others have demonstrated that an increased level of circulating IL-18 is one of the risk factors for cardiovascular diseases. Endothelin-1 (ET-1) has been reported to be a potent hypertrophy-promoting factor through RhoA and Rho-Kinase. Mechanical stretch induces a hypertrophic response, partly through the production of ET-1 through Endothelin A receptor (ETAR). Moreover, it has also been reported that mechanical stretch induces cardiac hypertrophy through Angiotensin subtype 1 receptor (AT1R). However, the mechanism by which the IL-18 gene expression is regulated in cardiomyocytes has not yet been fully understood. This study was designed to elucidate the functional significance of IL-18 gene expression in response to mechanical stretch. Neonatal rat cardiomyocytes cultured on silicone dishes were subjected to stretch. The moderate 20% mechanical stretch resulted in the elevation of IL-18 expression in a time-dependent manner with the maximal level achieved 36 hours after the stretch. Olmesartan, AT1R antagonist inhibited stretch-induced IL-18 expression. ETAR blockade BQ123 inhibited stretch-induced IL-18 expression. However, the Endothelin B receptor (ETBR) receptor blockade BQ788 did not inhibit this reaction. ET-1 induced IL-18 expression, with a peak induction after 4 hours of incubation. These results might suggest that stretch stimulation of cardiomyocytes induced ET-1 and, subsequently, ET-1 up-regulated the IL-18 expression. Furthermore, Fasudil, a Rho-Kinase inhibitor, and Simvastatin, a HMG-CoA reductase inhibitor, led to a significant reduction in mechanical stretch-induced IL-18 expression. These results indicated, for the first time, that IL-18 expression is induced by mechanical stretch in cardiomyocytes via the ETAR, AT1R, and the Rho/Rho-K pathways. The induction of IL-18 from cardiomyocytes by mechanical stress might cause the deterioration of cardiac functions in autocrine and paracrine fashion. The inhibition of IL-18 expression induced by mechanical stress might be one of the mechanisms that account for the beneficial cardiovascular effects of AT1R antagonist, ETAR blockade, Statin, and Rho-Kinase inhibitor.  相似文献   

2.
Stretch-activated channels (SACs) act as membrane mechanotransducers since they convert physical forces into biological signals and hence into a cell response. Pulmonary arterial smooth muscle cells (PASMCs) are continuously exposed to mechanical stimulations e.g., compression and stretch, that are enhanced under conditions of pulmonary arterial hypertension (PAH). Using the patch-clamp technique (cell-attached configuration) in PASMCs, we showed that applying graded negative pressures (from 0 to -60 mmHg) to the back end of the patch pipette increases occurrence and activity of SACs. The current-voltage relationship (from -80 to +40 mV) was almost linear with a reversal potential of 1 mV and a slope conductance of 34 pS. SACs were inhibited in the presence of GsMTx-4, a specific SACs blocker. Using microspectrofluorimetry (indo-1), we found that hypotonic-induced cell swelling increases intracellular Ca(2+) concentration ([Ca(2+)](i)). This [Ca(2+)](i) increase was markedly inhibited in the absence of external Ca(2+) or in the presence of the following blockers of SACs: gadolinium, streptomycin, and GsMTx-4. Interestingly, in chronically hypoxic rats, an animal model of PAH, SACs were more active and hypotonic-induced calcium response in PASMCs was significantly higher (nearly a two-fold increase). Moreover, unlike in normoxic rats, intrapulmonary artery rings from hypoxic rats mounted in a Mulvany myograph, exhibited a myogenic tone sensitive to SAC blockers. In conclusion, this work demonstrates that SACs in rat PASMCs can be activated by membrane stretch as well as hypotonic stimulation and are responsible for [Ca(2+)](i) increase. The link between SACs activation-induced calcium response and myogenic tone in chronically hypoxic rats suggests that SACs are an important element for the increased pulmonary vascular tone in PAH and that they may represent a molecular target for PAH treatment.  相似文献   

3.
We have identified a 35 amino acid peptide toxin of the inhibitor cysteine knot family that blocks cationic stretch-activated ion channels. The toxin, denoted GsMTx-4, was isolated from the venom of the spider Grammostola spatulata and has <50% homology to other neuroactive peptides. It was isolated by fractionating whole venom using reverse phase HPLC, and then assaying fractions on stretch-activated channels (SACs) in outside-out patches from adult rat astrocytes. Although the channel gating kinetics were different between cell-attached and outside-out patches, the properties associated with the channel pore, such as selectivity for alkali cations, conductance ( approximately 45 pS at -100 mV) and a mild rectification were unaffected by outside-out formation. GsMTx-4 produced a complete block of SACs in outside-out patches and appeared specific since it had no effect on whole-cell voltage-sensitive currents. The equilibrium dissociation constant of approximately 630 nM was calculated from the ratio of association and dissociation rate constants. In hypotonically swollen astrocytes, GsMTx-4 produces approximately 40% reduction in swelling-activated whole-cell current. Similarly, in isolated ventricular cells from a rabbit dilated cardiomyopathy model, GsMTx-4 produced a near complete block of the volume-sensitive cation-selective current, but did not affect the anion current. In the myopathic heart cells, where the swell-induced current is tonically active, GsMTx-4 also reduced the cell size. This is the first report of a peptide toxin that specifically blocks stretch-activated currents. The toxin affect on swelling-activated whole-cell currents implicates SACs in volume regulation.  相似文献   

4.
When skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures. When applied to 1-h stretch cultures with individual inhibitors for MS and L-VGC channels (GsMTx-4 and nifedipine, respectively) or with a less specific inhibitor (gadolinium chloride, Gd), satellite cell activation and upstream HGF release were abolished, as revealed by bromodeoxyuridine-incorporation assays and Western blotting of conditioned media, respectively. The inhibition was dose dependent with a maximum at 0.1 μM (GsMTx-4), 10 μM (nifedipine), or 100 μM (Gd) and canceled by addition of HGF to the culture media; a potent inhibitor for transient-type VGC channels (NNC55-0396, 100 μM) did not show any significant inhibitory effect. The stretch response was also abolished when calcium-chelator EGTA (1.8 mM) was added to the medium, indicating the significance of extracellular free calcium ions in our present activation model. Finally, cation/calcium channel dependencies were further documented by calcium-imaging analyses on stretched cells; results clearly demonstrated that calcium ion influx was abolished by GsMTx-4, nifedipine, and EGTA. Therefore, these results provide an additional insight that calcium ions may flow in through L-VGC channels by possible coupling with adjacent MS channel gating that promotes the local depolarization of cell membranes to initiate the satellite cell activation cascade.  相似文献   

5.
One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca2+ concentration ([Ca2+]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca2+]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca2+]i. The stretch-induced [Ca2+]i elevation was attenuated in Ca2+-free solution. In contrast, the increase of [Ca2+]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd3+, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca2+]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.  相似文献   

6.
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease.  相似文献   

7.
In cardiomyocytes, mechanical stress induces a variety of hypertrophic responses including an increase in protein synthesis and a reprogramming of gene expression. Recently, the calcium signaling has been reported to play an important role in the development of cardiac hypertrophy. In this article, we report on the role of the calcium signaling in stretch-induced gene expression in cardiomyocytes. Stretching of cultured cardiomyocytes up-regulates the expression of brain natriuretic peptide (BNP). Intracellular calcium-elevating agents such as the calcium ionophore A23187, the calcium channel agonist BayK8644 and the sarcoplasmic reticulum calcium-ATPase inhibitor thapsigargin up-regulate BNP gene expression. Conversely, stretch-induced BNP gene expression is suppressed by EGTA, stretch-activated ion channel inhibitors, voltage-dependent calcium channel antagonists, and long-time exposure to thapsigargin. Furthermore, stretch increases the activity of calcium-dependent effectors such as calcineurin and calmodulin-dependent kinase II, and inhibitors of calcineurin and calmodulin-dependent kinase II significantly attenuated stretch-induced hypertrophy and BNP expression. These results suggest that calcineurin and calmodulin-dependent kinase II are activated by calcium influx and subsequent calcium-induced calcium release, and play an important role in stretch-induced gene expression during the development of cardiac hypertrophy.  相似文献   

8.
Cardiomyocytes respond to mechanical stretch with an increase [Ca2+]i. Here, we analyzed which ion channels could mediate this effect. Murine ventricular myocytes were attached to a glass coverslip and a cell-attached glass stylus sheared the upper cell part versus the attached cell bottom. At negative clamp potentials, stretch induced inward currents that increased with the extent of stretch and reversed within 2 min after relaxation from stretch. Stretch activated a nearly voltage-independent GsMTx-4-sensitive non-selective cation conductance Gns, antibodies against TRPC6 prevented Gns activation. In addition, stretch deactivated a Cs+-sensitive inwardly rectifying potassium conductance GK1, antibodies against Kir2.3 inhibited this effect. Immunolabeling localized TRPC6 and Kir2.3 in T-tubular membranes, and stretch-induced changes in membrane currents were absent in cells whose T-tubules had been removed. In absence of stretch, we could activate Gns and deactivate GK1 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and other amphipaths. We interpret that the function of TRPC6 and Kir2.3 channels is controlled by both tension and curvature of the surrounding lipid bilayer that are changed by incorporation of amphipaths. Stretch-activation of TRPC6 channels may increase Ca2+ influx directly and indirectly, by membrane depolarization (activation of voltage-gated Ca2+ channels) and by elevated [Na+]i (augmented Na+,Ca2+-exchange).  相似文献   

9.
Acute aortic dissection is the most common life-threatening vascular disease, with sudden onset of severe pain and a high fatality rate. Clarifying the detailed mechanism for aortic dissection is of great significance for establishing effective pharmacotherapy for this high mortality disease. In the present study, we evaluated the influence of biomechanical stretch, which mimics an acute rise in blood pressure using an experimental apparatus of stretching loads in vitro, on rat aortic smooth muscle cell (RASMC) death. Then, we examined the effects of azelnidipine and mitogen-activated protein kinase inhibitors on mechanical stretch-induced RASMC death. The major findings of the present study are as follows: (1) cyclic mechanical stretch on RASMC caused cell death in a time-dependent manner up to 4 h; (2) cyclic mechanical stretch on RASMC induced c-Jun N-terminal kinase (JNK) and p38 activation with peaks at 10 min; (3) azelnidipine inhibited RASMC death in a concentration-dependent manner as well as inhibited JNK and p38 activation by mechanical stretch; and (4) SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) protected against stretch-induced RASMC death; (5) Antioxidants, diphenylene iodonium and tempol failed to inhibit stretch-induced RASMC death. On the basis of the above findings, we propose a possible mechanism where an acute rise in blood pressure increases biomechanical stress on the arterial walls, which induces RASMC death, and thus, may lead to aortic dissection. Azelnidipine may be used as a pharmacotherapeutic agent for prevention of aortic dissection independent of its blood pressure lowering effect.  相似文献   

10.
We investigated whether cyclic stretch affects TRPC4 or TRPC6 expression and calcium mobilization in cultured vascular smooth muscle cells. In aortic and mesenteric smooth muscle cells isolated from male Sprague-Dawley rats, TRPC4 expression was decreased after 5 h stretch and remained suppressed through 24 h stretch. After removal of the stretch stimulus, TRPC4 expression recovered within 2 h. Stretch did not affect TRPC6 expression. Stretch also decreased capacitative calcium entry, while agonist-induced calcium influx was increased. Similar results were obtained in primary aortic smooth muscle cells. TRPC4 mRNA levels were not decreased in response to mechanical strain. TRPC4 downregulation was also achieved by increasing extracellular calcium and was attenuated by gadolinium and MG132, suggesting that TRPC4 protein is regulated by intracellular calcium concentration and/or the ubiquitin-proteasome pathway. These data suggest that stretch-induced downregulation of TRPC4 protein expression and capacitative calcium entry may be a protective mechanism to offset stretch-induced increases in intracellular calcium.  相似文献   

11.
12.
SA channel mediates superoxide production in HUVECs   总被引:1,自引:0,他引:1  
Superoxide production in response to cyclic stretch (1 Hz, 20% in length) was investigated in human umbilical vein endothelial cells (HUVECs). The basal production of superoxide without stretch increased gradually, while the production of superoxide with stretch increased significantly as compared to that without stretch and it became significant 80 min after the onset of cyclic stretch (P<0.05, n=8-14). The superoxide production increased in a stretch-dependent manner and became significant when stretch was more than 10% (p<0.05, n=11-16). To investigate the involvement of SA channel, we added Gd3+ or EGTA in the reaction solution and examined the stretch-induced superoxide production. In cells stretched in the presence of 20 microM Gd3+, the stretch-induced superoxide production was significantly inhibited (at 120 min, p<0.05, n=8-18). The cyclic stretch-induced superoxide production was also significantly inhibited by the removal of extracellular Ca2+ with 5 mM EGTA (at 120 min, p<0.05, n=8-18). Neither the application of Gd3+ nor the removal of extracellular Ca2+ significantly changed the basal production of superoxide. These data suggest that the stretch-induced superoxide production increases in time- and stretch-dependent manner and that the stretch-induced superoxide production in HUVECs is regulated by Ca2+ influx through SA channels.  相似文献   

13.
Accumulating evidence suggests that resveratrol may have beneficial effects against traumatic brain injury. However, its effect on the regulation of extracellular levels of gliotransmitter and on the activation of p38 MAPK in astrocytes is still unknown. We have examined whether resveratrol regulates extracellular levels of gliotransmitter as well as the activation of p38 MAPK in cultured astrocytes before and after stretch injury. The extracellular levels of glutamate, d-/l-serine and d-serine were apparently reduced by 100 μM resveratrol in control astrocyte cultures. The dramatic increase of glutamate and d-serine release induced by stretch injury was also clearly inhibited by resveratrol. Resveratrol mediates this response by reduction of release through inhibition of extracellular calcium influx and increment of gliotransmitter uptake through enhancement of amino acid transporter expressed in the membrane of astrocyte. In addition, resveratrol definitely reduced the activation of p38 MAPK in cultured astrocytes following stretch injury. AMPA receptor is involved in the activation of p38 following injury. Conversely, the levels of glutamine and glycine were not obviously affected by resveratrol before and after injury. Intracellular levels of glutamate and d-serine are not apparently changed by stretch injury. Collectively, our data suggest that resveratrol might play an important role in protection of the nervous system after injury by decreasing the extracellular levels of gliotransmitter and inhibiting activation of p38 MAPK following injury.  相似文献   

14.
The role of stretch-activated channels (SACs) on the stretch-induced changes of rat atrial myocytes was studied using a computer model that incorporated various ion channels and transporters including SACs. A relationship between the extent of the stretch and the activation of SACs was formulated in the model based on experimental findings to reproduce changes in electrical activity and Ca2+ transients by stretch. Action potentials (APs) were significantly changed by the activation of SACs in the model simulation. The duration of the APs decreased at the initial fast phase and increased at the late slow phase of repolarisation. The resting membrane potential was depolarised from −82 to −70 mV. The Ca2+ transients were also affected. A prolonged activation of SACs in the model gradually increased the amplitude of the Ca2+ transients. The removal of Ca2+ permeability through SACs, however, had little effect on the stretch-induced changes in electrical activity and Ca2+ transients in the control condition. In contrast, the removal of the Na+ permeability nearly abolished these stretch-induced changes. Plotting the peaks of the Ca2+ transients during the activation of the SACs along a time axis revealed that they follow the time course of the Nai+ concentration. The Ca2+ transients were not changed when the Nai+ concentration was fixed to a control value (5.4 mM). These results predicted by the model suggest that the influx of Na+ rather than Ca2+ through SACs is more crucial to the generation of stretch-induced changes in the electrical activity and associated Ca2+ transients of rat atrial myocytes.  相似文献   

15.
Mechanicalstretch has been implicated in phenotypic changes as an adaptiveresponse to stretch stress physically loaded in bladder smooth musclecells (BSMCs). To investigate stretch-induced signaling, we examinedthe mitogen-activated protein kinase (MAPK) family using rat primaryBSMCs. When BSMCs were subjected to sustained mechanical stretch usingcollagen-coated silicon membranes, activation of c-JunNH2-terminal kinase (JNK) was most relevant among three subsets of MAPK family members: the activity was elevated from 5 minafter stretch and peaked at 10 min with an 11-fold increase. Activationof p38 was weak compared with that of JNK, and ERK was notactivated at all. JNK activation by mechanical stretch was totallydependent on extracellular Ca2+ and inhibited byGd3+, a blocker of stretch-activated (SA) ion channels.Nifedipine and verapamil, inhibitors for voltage-dependentCa2+ channels, had no effect on this JNK activation.Moreover, none of the inhibitors pertussis toxin, genistein,wortmannin, or calphostin C affected stretch-induced JNK activation,indicating that G protein-coupled and tyrosine kinase receptors areunlikely to be involved in this JNK activation. On the other hand, W-7,a calmodulin inhibitor, and cyclosporin A, a calcineurin inhibitor,prevented JNK activation by stretch. These results suggest a novelpathway for stretch-induced activation of JNK in BSMCs: mechanicalstretch evokes Ca2+ influx via Gd3+-sensitiveSA Ca2+ channels, resulting in JNK activation underregulation in part by calmodulin and calcineurin.

  相似文献   

16.
To investigate how mechanical stress is sensed by cardiomyocytes and translated to cardiac hypertrophy, cardiomyocytes were subjected to stretch while measuring phospholipase C (PLC) and phospholipase D (PLD) activities and levels of intracellular calcium ions ([Ca2+]i) and pH.In stretched cardiomyocytes, PLC activity increased 2-fold after 30 min, whereas PLD activity hardly increased at all. Mechanical stress induced by prodding or by cell stretch increased [Ca2+](i)by a factor 5.2 and 4, respectively. Gadolinium chloride (stretch-activated channel blocker) attenuated the prodding-induced and stretch-induced [Ca2+](i)rise by about 50%. Blockade of ryanodine receptors by a combination of Ruthenium Red and procaine reduced the [Ca2+](i)rise only partially. Diltiazem (L-type Ca2+ channel antagonist) blocked the prodding-induced [Ca2+](i)rise completely, and reduced the stretch-induced [Ca2+](i)rise by about 50%. The stretch-induced [Ca2+](i)rise was unaffected by U73122, an inhibitor of PLC activity. Stretch did not cause cellular alkalinization.In conclusion, in cardiomyocytes, PLC and [Ca2+](i)levels are involved in the stretch-induced signal transduction, whereas PLD plays apparently no role. The stretch-induced rise in [Ca2+](i)in cardiomyocytes is most probably caused by [Ca2+](i)influx through L-type Ca2+ channels and stretch-activated channels, leading to Ca2+-induced Ca2+ -release from the SR via the ryanodine receptor.  相似文献   

17.
The cornea is a load-bearing tissue. Lower biomechanical properties in the local tissue of keratoconic cornea evoke mechanical stress increase. Inflammatory cytokines have been shown to be over-expressed in patients with keratoconus. However, how mechanical stimuli are involved in the production of inflammatory cytokines in keratoconus remains unclear. The objective of the study is to determine the role of mechanical stretch in the regulation of inflammatory cytokines and the underlying mechanisms in keratoconus. Human keratoconic fibroblasts (hKCFs) were subjected to 12% cyclic mechanical stretch at 0.1 Hz or in static conditions as controls. N-acetyl cysteine (NAC) and pyrrolidine dithiocarbamate and pyrrolidine dithiocarbamate (PDTC) were used to inhibit reactive oxygen species (ROS) production and NF-κB pathway respectively. ROS production was measured using 2’,7’-dichlorodihydrofluorescindiacetate probe. Conditioned media and cell lysates were collected for protein assessment. Cyclic stretch-induced a higher production of intercellular cell adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-8 in hKCFs than static controls. ROS was also elevated in response to cyclic stretch. Inhibition of ROS or NF-κB attenuated stretch-induced ICAM-1, TNF-α, IL-6, and IL-8. Inhibition of stretch-induced ROS production by NAC also attenuated NF-κB activation. Our findings suggest that mechanical stretch may induce the release of inflammatory cytokines by activating oxidative stress and NF-kB pathway, and ROS may positively control NF-κB signaling. Over-expression of inflammatory cytokines induced by mechanical stretch may play a role in progression of keratoconus.  相似文献   

18.
Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRPV4-mediated calcium influx in endothelial cells, which is important for nitric oxide-dependent vasodilation. However, the molecular mechanism through which ACh activates TRPV4 is not known. Here, we show that ACh-induced calcium influx and endothelial nitric oxide synthase (eNOS) phosphorylation but not calcium release from intracellular stores is inhibited by a specific TRPV4 antagonist, AB-159908. Importantly, activation of store-operated calcium influx was not altered in the TRPV4 null EC, suggesting that TRPV4-dependent calcium influx is mediated through a receptor-operated pathway. Furthermore, we found that ACh treatment activated protein kinase C (PKC) α, and inhibition of PKCα activity by the specific inhibitor Go-6976, or expression of a kinase-dead mutant of PKCα but not PKCε or downregulation of PKCα expression by chronic 12-O-tetradecanoylphorbol-13-acetate treatment, completely abolished ACh-induced calcium influx. Finally, we found that ACh-induced vasodilation was inhibited by the PKCα inhibitor Go-6976 in small mesenteric arteries from wild-type mice, but not in TRPV4 null mice. Taken together, these findings demonstrate, for the first time, that a specific isoform of PKC, PKCα, mediates agonist-induced receptor-mediated TRPV4 activation in endothelial cells.  相似文献   

19.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

20.
Mechanical force can induce a number of fundamental short- and long-term responses in myocardium. These include alterations in ECM, activation of cell-signaling pathways, altered gene regulation, changes in cell proliferation and growth, and secretion of a number of peptides and growth factors. It is now known that a number of these autocrine/paracrine factors are secreted from both cardiomyocytes and ventricular cardiac fibroblasts (CFb) in response to stretch. One such substance is IGF-I. IGF-I is an important autocrine/paracrine factor that can regulate physiological or pathophysiological responses, such as hypertrophy. In this study, we addressed the possible effects of mechanical perturbation, biaxial strain, on IGF-I secretion from adult rat CFb. CFb were subjected to either static stretch (3-10%) or cyclic stretch (10%; 0.1-1 Hz) over a 24-h period. IGF-1 secretion from CFb in response to selected stretch paradigms was examined using ELISA to measure IGF-I concentrations in conditioned media. Static stretch did not result in any measurable modulation of IGF-I secretion from CFb. However, cyclic stretch significantly increased IGF-I secretion from CFb in a frequency- and time-dependent manner compared with nonstretched controls. This stretch-induced increase in secretion was relatively insensitive to changes in extracellular [Ca(2+)] or to block of L-type Ca(2+) channels. In contrast, thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, remarkably decreased stretch-induced IGF-I secretion from CFb. We further show that IGF-I can upregulate mRNA expression of atrial natriuretic peptide in myocytes. In summary, cyclic stretch can significantly increase IGF-I secretion from CFb, and this effect is dependent on a thapsigargin-sensitive pool of intracellular [Ca(2+)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号