首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reliability and accuracy of real-time quantitative PCR results depend on the use of housekeeping genes which must be constitutively expressed thorough the samples of the study. In the present work, we tested the expression stability of six candidate housekeeping genes (Actb, Rn18s, Gapdh, Hprt1, Sdha and B2m) considering sex, age, muscle-type and neurodegeneration or denervation status in mouse muscle satellite cells. Their expression varied under all variables tested; therefore the ranking of the most suitable genes for the normalization is modified depending on the factors included in the analysis, especially the age of the donor. Moreover, we describe the unsuitability of Rn18s in analysis comprising samples of different ages. On the other hand, we demonstrate that the use of the two best genes in each case is enough to obtain a reliable normalization factor. In this work, we give a broad information of the best housekeeping genes in mouse myogenic cells depending on the variables included in the experimental design.  相似文献   

2.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

3.
We present evidence for differential roles of Rho-kinase and myosin light chain kinase (MLCK) in regulating shape, adhesion, migration, and chemotaxis of human fibrosarcoma HT1080 cells on laminin-coated surfaces. Pharmacological inhibition of Rho-kinase by Y-27632 or inhibition of MLCK by W-7 or ML-7 resulted in significant attenuation of constitutive myosin light chain phosphorylation. Rho-kinase inhibition resulted in sickle-shaped cells featuring long, thin F-actin-rich protrusions. These cells adhered more strongly to laminin and migrated faster. Inhibition of MLCK in contrast resulted in spherical cells and marked impairment of adhesion and migration. Inhibition of myosin II activation with blebbistatin resulted in a morphology similar to that induced by Y-27632 and enhanced migration and adhesion. Cells treated first with blebbistatin and then with ML-7 also rounded up, suggesting that effects of MLCK inhibition on HT1080 cell shape and motility are independent of inhibition of myosin activity.  相似文献   

4.
The intrinsic ability of vascular smooth muscle cells (VSMCs) within arterial resistance vessels to respectively contract and relax in response to elevation and reduction of intravascular pressure is essential for appropriate blood flow autoregulation. This fundamental mechanism, referred to as the myogenic response, is dependent on apposite control of myosin regulatory light chain (LC20) phosphorylation, a prerequisite for force generation, through the coordinated activity of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Here, we highlight the molecular basis of the smooth muscle contractile mechanism and review the regulatory pathways demonstrated to participate in the control of LC20 phosphorylation in the myogenic response, with a focus on the Ca2+-dependent and Rho-associated kinase (ROK)-mediated regulation of MLCK and MLCP, respectively.  相似文献   

5.
We investigated theoretically and experimentally the Ca2+-contraction coupling in rat tracheal smooth muscle. [Ca2+]i, isometric contraction and myosin light chain (MLC) phosphorylation were measured in response to 1 mM carbachol. Theoretical modeling consisted in coupling a model of Ca2+-dependent MLC kinase (MLCK) activation with a four-state model of smooth muscle contractile apparatus. Stimulation resulted in a short-time contraction obtained within 1 min, followed by a long-time contraction up to the maximal force obtained in 30 min. ML-7 and Wortmannin (MLCK inhibitors) abolished the contraction. Chelerythrine (PKC inhibitor) did not change the short-time, but reduced the long-time contraction. [Ca2+ i responses of isolated myocytes recorded during the first 90 s consisted in a fast peak, followed by a plateau phase and, in 28% of the cells, superimposed Ca2+ oscillations. MLC phosphorylation was maximal at 5 s and then decreased whereas isometric contraction followed a Hill-shaped curve. The model properly predicts the time course of MLC phosphorylation and force of the short-time response. With oscillating Ca2+ signal, the predicted force does not oscillate. According to the model, the amplitude of the plateau and the frequency of oscillations encode for the amplitude of force, whereas the peak encodes for force velocity. The long-time phase of the contraction, associated with a second increase in MLC phosphorylation, may be explained, at least partially, by MLC phosphatase (MLCP) inhibition, possibly via PKC inhibition.  相似文献   

6.
Recent research has implicated nitric oxide (NO) in the induction of the hypersensitive response (HR) during plant-pathogen interactions. Here we demonstrate that Arabidopsis suspension cultures generate elevated levels of NO in response to challenge by avirulent bacteria, and, using NO donors, show that these elevated levels of NO are sufficient to induce cell death in Arabidopsis cells independently of reactive oxygen species (ROS). We also provide evidence that NO-induced cell death is a form of programmed cell death (PCD), requiring gene expression, and has a number of characteristics of PCD of mammalian cells: NO induced chromatin condensation and caspase-like activity in Arabidopsis cells, while the caspase-1 inhibitor, Ac-YVAD-CMK, blocked NO-induced cell death. A well-established second messenger mediating NO responses in mammalian cells is cGMP, produced by the enzyme guanylate cyclase. A specific inhibitor of guanylate cyclase blocked NO-induced cell death in Arabidopsis cells, and this inhibition was reversed by the cell-permeable cGMP analogue, 8Br-cGMP, although 8Br-cGMP alone did not induce cell death or potentiate NO-induced cell death. This suggests that cGMP synthesis is required but not sufficient for NO-induced cell death in Arabidopsis. In-gel protein kinase assays showed that NO activates a potential mitogen-activated protein kinase (MAPK), although a specific inhibitor of mammalian MAPK activation, PD98059, which blocked H2O2-induced cell death, did not inhibit the effects of NO.  相似文献   

7.
Thum T  Tsikas D  Frölich JC  Borlak J 《FEBS letters》2003,555(3):567-571
Growth hormone deficiency is linked to cardiovascular disease and particularly increased peripheral vascular resistance. Surprisingly, its role in endothelial nitric oxide (NO) synthetase (eNOS) regulation and NO release is basically unknown. We therefore studied the effects of different doses of somatotropin in cultures of a human endothelial cell line (EAhy926). We investigated expression and activity of eNOS, as well as other target genes known to be deregulated in cardiovascular disease including E-selectin and the lectin-like oxidized low density lipoprotein receptor. Treatment of cultured human endothelial cells with somatotropin resulted in significant (P<0.05) increases of eNOS gene and protein expression, as well as NO release, whereas production of intracellular reactive oxygen species was significantly reduced, at the highest somatotropin dose level. The enhanced eNOS gene/protein expression and enzyme activity correlate well. Our findings are suggestive for a novel role of growth hormone in endothelial biology, and particularly NO production.  相似文献   

8.
9.
10.
The PKD1 gene is essential for a number of biological functions, and its loss-of-function causes autosomal dominant polycystic kidney disease (ADPKD). The gene is developmentally regulated and believed to play an essential role in renal development. Previous studies have shown that manipulating murine renal organ cultures with dominant-negative forms of the Pkd1 gene impaired ureteric bud (UB) branching. In the current study, we analyzed different stages of renal development in two distinct mouse models carrying either a null mutation or inactivation of the last two exons of Pkd1. Surprisingly, metanephric explants from Pkd1-deleted kidneys harvested at day E11.5 did not show defects of UB branching and elongation, estimated by cytokeratin staining on fixed tissues or by Hoxb7-GFP time-lapse imaging. However, renal explants from Pkd1-mutants isolated at day E14.5 showed impaired nephrogenesis. Notably, we observed cell migratory defects in the developing endothelial compartment. Previous studies had implicated the Pkd1 gene in controlling cell migration and collagen deposition through PI3 kinases. In line with these studies, our results show that wild-type explants treated with PI3-kinase inhibitors recapitulate the endothelial defects observed in Pkd1 mutants, whereas treatment with VEGF only partially rescued the defects. Our data are consistent with a role for the Pkd1 gene in the endothelium that may be required for proper nephrogenesis.  相似文献   

11.
Sun X  Gao L  Yu RK  Zeng G 《Journal of neurochemistry》2006,99(4):1114-1121
WNK1, a Ser/Thr protein kinase, is widely expressed in many tissues. Its biological functions are largely unknown. Disruption of the WNK1 gene in mice leads to embryonic lethality at day 13, implicating a critical role of WNK1 in embryonic development. To investigate this potential function, we used antisense strategy to knock down the expression of WNK1 in a mouse neural progenitor cell line, C17.2. Down-regulation of WNK1 in C17.2 cells greatly reduced cell growth. Addition of epidermal growth factor (EGF), a mitogen for C17.2 cells, had no effect on growth. The WNK1-knockdown cells showed a flat and rounded morphology, characteristic of the immature and non-differentiated phenotype of the progenitor cells; this was further demonstrated by immunostaining for the progenitor and neuronal markers. Migration of the WNK1-knockdown C17.2 cells was reduced as tested in culture dishes or Matrigel-covered chambers. Moreover, activation of extracellular signal-regulated kinase (ERK1)/2 and ERK5 by EGF in the WNK1-knockdown cells was suppressed. These results demonstrate a novel function of WNK1 in proliferation, migration, and differentiation of neural progenitor cells, likely by mechanisms involving activation of the mitogen-activated protein (MAP) kinase ERK1/2 and/or ERK5 pathways.  相似文献   

12.
Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when muscle differentiation is induced. Moreover, maintenance of Menin expression by constitutive ectopic expression inhibited muscle cell differentiation. Reduction of Menin expression by siRNA technology results in precocious muscle differentiation and concomitantly attenuates BMP-2 induced osteogenesis. Reduced Menin expression antagonizes BMP-2 and TGF-β1 mediated inhibition of myogenesis. Furthermore, Menin was found to directly interact with and potentiate the transactivation properties of Smad3 in response to TGF-β1. Finally in concert with these observations, tissue-specific inactivation of Men1 in Pax3-expressing somite precursor cells leads to a patterning defect of rib formation and increased muscle mass in the intercostal region. These data invoke a pivotal role for Menin in the competence of mesenchymal cells to respond to TGF-β1 and BMP-2 signals. Thus, by modulating cytokine responsiveness Menin functions to alter the balance of multipotent mesenchymal cell commitment to the osteogenic or myogenic lineages.  相似文献   

13.
Nitric oxide (NO) is implicated in the pathogenesis of lung inflammation and edema. In this study, the effects of nitric oxide (NO)-donors on membrane water permeability and cell surface expression of aquaporin-5 (AQP5) in mouse lung epithelial cells were examined. NO-donors, GSNO and NOC-18 decreased cell surface expression of AQP5, concentration- and time-dependently, whereas they did not affect the amount of AQP5 in whole cell lysates. The membrane water permeability of cells was also decreased by treatment with NO-donors. The decrease in cell surface AQP5 by NO was abolished by simultaneous treatment with methyl-beta-cyclodextrin, but not with ODQ, an inhibitor of the cGMP-dependent pathway. In addition, immunocytochemistry with anti-AQP5 indicated that NO changed AQP5 localization from the plasma membrane to the intracellular fraction. These data indicate that NO stimulates AQP5 internalization from the plasma membrane through a cGMP-independent mechanism, and decreases membrane water permeability.  相似文献   

14.
Myosin light chain 2 (MLC-2) gene was isolated and characterized from Antheraea pernyi, a well-known wild silkmoth. The isolated cDNA sequence is 905 bp in length with an open reading frame of 612 bp encoding a polypeptide of 203 amino acids. Semi-quantitative RT-PCR analysis showed that the MLC-2 gene was transcribed during four developmental stages (egg, larva, pupa, and moth), and present in all tissues tested. Alignment analysis revealed that the deduced protein sequence has over 95% identity to myosin light chain 2 of lepidopteran species, and 57–88% identity to other insect species, suggesting that insect MLC-2 proteins are highly conserved throughout evolution. The protein sequence was used to construct phylogenetic trees with other known vertebrate and invertebrate MLC-2 sequences, and the obtained trees demonstrated similar topology with the classical systematics, indicating the potential value of MLC-2 gene in phylogenetic study.  相似文献   

15.
Amphetamine (AMPH) and cocaine are indirect dopamine agonists that activate multiple signaling cascades in the striatum. Each cascade has a different subcellular location and duration of action that depend on the strength of the drug stimulus. In addition to activating D1 dopamine-Gs-coupled-protein kinase A signaling, acute psychostimulant administration activates extracellular-regulated kinase transiently in striatal cells; conversely, inhibition of extracellular-regulated kinase phosphorylation decreases the ability of psychostimulants to elevate locomotor behavior and opioid peptide gene expression. Moreover, a drug challenge in rats with a drug history augments and prolongs striatal extracellular-regulated kinase phosphorylation, possibly contributing to behavioral sensitization. In contrast, AMPH activates phosphoinositide-3 kinase substrates, like protein kinase B/Akt, only in the nuclei of striatal cells but this transient increase induced by AMPH is followed by a delayed decrease in protein kinase B/Akt phosphorylation whether or not the rats have a drug history, suggesting that the phosphoinositide-3 kinase pathway is not essential for AMPH-induced behavioral sensitization. Chronic AMPH or cocaine also alters the regulation of inhibitory G protein-coupled receptors in the striatum, as evident by a prolonged decrease in the level of regulator of G protein signaling 4 after non-contingent or contingent (self-administered) drug exposure. This decrease is exacerbated in behaviorally sensitized rats and reversed by re-exposure to a cocaine-paired environment. A decrease in regulator of G protein signaling 4 levels may weaken its interactions with metabotropic glutamate receptor 5, Galphaq, and phospholipase C beta that may enhance drug-induced signaling. Alteration of these protein-protein interactions suggests that the striatum responds to psychostimulants with a complex molecular repertoire that both modulates psychomotor effects and leads to long-term neuroadaptations.  相似文献   

16.
JNK is one of the key molecules regulating cell differentiation and migration in a variety of cell types, including cerebral cortical neurons. MUK/DLK/ZPK belongs to the MAP kinase-kinase-kinase class of protein kinases for the JNK pathway and is expressed predominantly in neural tissue. We have determined the expression pattern of MUK/DLK/ZPK and active JNK in the cerebellum at different stages of postnatal development. Quantitative analysis by Western blotting has showed that high expression levels of MUK/DLK/ZPK and active JNK are maintained during the postnatal development of the cerebellum, and that these levels decrease in the adult cerebellum. Immunohistochemical staining has revealed, however, that their distribution in the developing cerebellum is considerably different. Although active JNK is highly concentrated in the premigratory zone of the external germinal layer (EGL), high expression of MUK/DLK/ZPK has been observed in the molecular layer and in the premigratory zone. Neither the active JNK nor MUK protein has been detected in the proliferative zone of the EGL. These observations suggest that during the postnatal development of the cerebellum, the MUK-JNK signaling pathway contributes to the regulation of granule cell differentiation and migration; further, the activity of MUK/DLK/ZPK is tightly regulated by posttranslational mechanisms and by its expression level.This work was supported by a Ishizu Shun memorial scholarship and grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

17.
Multiple cell-cell interactions control bone morphogenesis and vascularization. We have employed a spheroidal coculture system of endothelial cells (EC) and osteoblasts (OB) to study cell contact-dependent gene regulation between these two cell types that may play a role in regulating OB differentiation and EC angiogenic properties. Coculture spheroids differentiate spontaneously to organize into a core of OB and a surface layer of endothelial cells. Individual spheroid culture of EC or OB leads to significant alterations in gene expression compared to standard monolayer culture (upregulation of Tie-2 in EC; upregulation of angiopoietin-2 in osteoblasts). More importantly, spheroidal coculture of endothelial cells and osteoblasts leads to significant changes of gene expression in both cell populations (upregulation of VEGFR-2 in EC; downregulation of VEGF, and upregulation of alkaline phosphatase in osteoblasts). These changes are dependent on cell-cell contact and are not seen in stimulation experiments with conditioned supernatants. Collectively, the data demonstrate complex bi-directional gene regulation mechanisms between EC and OB that are likely to play a critical role during OB differentiation and in controlling the properties of angiogenic EC.  相似文献   

18.
19.
Here we review some of our work over the last decade on Xenopus oocyte maturation, a cell fate switch, and the Xenopus embryonic cell cycle, a highly dynamical process. Our approach has been to start with wiring diagrams for the regulatory networks that underpin the processes; carry out quantitative experiments to describe the response functions for individual legs of the networks; and then construct simple analytical models based on chemical kinetic theory and the graphical rate-balance formalism. These studies support the view that the all-or-none, irreversible nature of oocyte maturation arises from a saddle-node bifurcation in the regulatory system that drives the process, and that the clock-like oscillations of the embryo are built upon a hysteretic switch with two saddle-node bifurcations. We believe that this type of reductionistic systems biology holds great promise for understanding complicated biochemical processes in simpler terms.  相似文献   

20.
Osteoblast-like cell cultures have been established from the marrow of adult rat vertebrae. We have simultaneously examined the response to dexamethasone (dex) treatment in cultures of young adult female vertebral and femoral marrow cells. Alkaline phosphatase (AP) activity was analyzed as well as the expression of mRNAs for osteocalcin (OC) and insulin-like growth factor I (IGF-I). The vertebral and femoral marrow cells were maintained for 7 days in primary culture with or without 10−8 M dex and then 6 days in secondary culture without dex or with 10−8 M or 10−7 M dex. All cells were examined on day 6 of secondary culture. Vertebral and femoral cultures each expressed the highest AP enzyme levels when grown with dex in primary culture (10−8 M) and secondary culture (10−7 M). Under all experimental conditions, vertebral cultures had lower AP enzyme activity than femoral cultures. When dex was omitted from secondary culture, OC gene expression was not detected in either vertebral or femoral passaged cells even if dex was present in primary culture. For dex conditions where OC was expressed, vertebral cultures had higher OC mRNA steady-state levels than femoral cultures. IGF-I gene expression was detected by Northern analysis in both vertebral and femoral secondary cultures. However, vertebral marrow cultures had much higher IGF-I mRNA levels compared to femoral cultures whether or not dex was present in primary culture. These findings demonstrate that dex supports the differentiation of both vertebral and femoral adult marrow osteogenic cells into osteoblasts. Our results support the hypothesis that osteoblastic marrow cultures differ depending upon which location in the skeleton they are from and that there are skeletal site–dependent differences in the insulin-like growth factor system components. J. Cell. Biochem. 71:382–391, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号