首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.  相似文献   

2.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.  相似文献   

3.
The calcium-activated chloride channel anoctamin1 (ANO1; TMEM16A) is fundamental for the function of epithelial organs. Mice lacking ANO1 expression exhibit transport defects and a pathology similar to cystic fibrosis. They also show a general defect of epithelial electrolyte transport. Here we analyzed expression of all ten members (ANO1–ANO10) in a broad range of murine tissues and detected predominant expression of ANO1, 6, 7, 8, 9, 10 in epithelial tissues, while ANO2, 3, 4, 5 are common in neuronal and muscle tissues. When expressed in Fisher Rat Thyroid (FTR) cells, all ANO proteins localized to the plasma membrane but only ANO1, 2, 6, and 7 produced Ca2+-activated Cl conductance, as analyzed by ATP-induced iodide quenching of YFP fluorescence. In contrast ANO9 and ANO10 suppressed baseline Cl conductance and coexpression of ANO9 with ANO1 inhibited ANO1 activity. Patch clamping of ANO-expressing FRT cells indicated that apart from ANO1 also ANO6 and 10 produced chloride currents, albeit with very different Ca2+ sensitivity and activation time. We conclude that each tissue expresses a set of anoctamins that form cell- and tissue-specific Ca2+-dependent Cl channels.  相似文献   

4.
Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca2+. Two family members, ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose. We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.  相似文献   

5.
Ca(2+)-activated Cl(-) channels (CaCCs) are involved in several physiological processes. Recently, TMEM16A/anoctamin1 and TMEM16B/anoctamin2 have been shown to function as CaCCs, but very little information is available on the structure-function relations of these channels. TMEM16B is expressed in the cilia of olfactory sensory neurons, in microvilli of vomeronasal sensory neurons, and in the synaptic terminals of retinal photoreceptors. Here, we have performed the first site-directed mutagenesis study on TMEM16B to understand the molecular mechanisms of voltage and Ca(2+) dependence. We have mutated amino acids in the first putative intracellular loop and measured the properties of the wild-type and mutant TMEM16B channels expressed in HEK 293T cells using the whole cell voltage-clamp technique in the presence of various intracellular Ca(2+) concentrations. We mutated E367 into glutamine or deleted the five consecutive glutamates (386)EEEEE(390) and (399)EYE(401). The EYE deletion did not significantly modify the apparent Ca(2+) dependence nor the voltage dependence of channel activation. E367Q and deletion of the five glutamates did not greatly affect the apparent Ca(2+) affinity but modified the voltage dependence, shifting the conductance-voltage relations toward more positive voltages. These findings indicate that glutamates E367 and (386)EEEEE(390) in the first intracellular putative loop play an important role in the voltage dependence of TMEM16B, thus providing an initial structure-function study for this channel.  相似文献   

6.

Background  

The anoctamin family of transmembrane proteins are found in all eukaryotes and consists of 10 members in vertebrates. Ano1 and ano2 were observed to have Ca2+ activated Cl- channel activity. Recent findings however have revealed that ano6, and ano7 can also produce chloride currents, although with different properties. In contrast, ano9 and ano10 suppress baseline Cl- conductance when co-expressed with ano1 thus suggesting that different anoctamins can interfere with each other. In order to elucidate intrinsic functional diversity, and underlying evolutionary mechanism among anoctamins, we performed comprehensive bioinformatics analysis of anoctamin gene family.  相似文献   

7.
The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.  相似文献   

8.
At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl with other anions (PX/PCl) was SCN > I > NO3 > Br > Cl > F > gluconate. When external Cl was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 µM Ca2+ were modified according to the sequence of permeability ratios, with anions more permeant than Cl slowing both activation and deactivation and anions less permeant than Cl accelerating them. Moreover, replacement of external Cl with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl with SCN shifted G-V to more negative potentials. Dose–response relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracellular SCN also increased compared with that in Cl. Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating.  相似文献   

9.
Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl currents in mouse vomeronasal sensory neurons.  相似文献   

10.
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.  相似文献   

11.
Ca(2+)-activated Cl(-) channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3-7 in HEK293 cells did not generate Cl(-) currents activated by intracellular Ca(2+), as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease.  相似文献   

12.
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca2+-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca2+-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca2+-activated Cl channels.  相似文献   

13.
In the past, a number of candidates have been proposed to form Ca2+ activated Cl currents, but it is only recently that two families of proteins, the bestrophins and the TMEM16-proteins, recapitulate reliably the properties of Ca2+ activated Cl currents. Bestrophin 1 is strongly expressed in the retinal pigment epithelium, but also at lower levels in other cell types. Bestrophin 1 may form Ca2+ activated chloride channels and, at the same time, affect intracellular Ca2+ signaling. In epithelial cells, bestrophin 1 probably controls receptor mediated Ca2+ signaling. It may do so by facilitating Ca2+ release from the endoplasmic reticulum, thereby indirectly activating membrane localized Ca2+-dependent Cl channels. In contrast to bestrophin 1, the Ca2+ activated Cl channel TMEM16A (anoctamin 1, ANO1) shows most of the biophysical and pharmacological properties that have been attributed to Ca2+-dependent Cl channels in various tissues. TMEM16A is broadly expressed in both mouse and human tissues and is of particular importance in epithelial cells. Thus exocrine gland secretion as well as electrolyte transport by both respiratory and intestinal epithelia requires TMEM16A. Because of its role for Ca2+-dependent Cl secretion in human airways, it is likely to become a prime target for the therapy of cystic fibrosis lung disease, caused by defective cAMP-dependent Cl secretion. It will be very exciting to learn, how TMEM16A and other TMEM16-proteins are activated upon increase in intracellular Ca2+, and whether the other nine members of the TMEM16 family also form Cl channels with properties similar to TMEM16A.  相似文献   

14.
Ca2 +-activated Cl currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13 μM Ca2 +. However, in the presence of 1.5 μM Ca2 + (but not in 13 μM Ca2 +), A9C also induced a strong potentiation of tail currents measured at − 100 mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.  相似文献   

15.
A cDNA encoding -amino acid oxidase (DAO;EC 1.4.3.3) has been isolated from a BALB/c mouse kidney cDNA library by hybridization with the cDNA for the porcine enzyme. Analysis of the nucleotide (nt) sequence of the clone revealed that it has a 1647-nt sequence with a 5′-terminal untranslated region of 68 nt that encodes 345 amino acids (aa), and a 3′-terminal untranslated region of 544 nt that contains the polyadenylation signal sequence ATTAAA. The deduced aa sequence showed 77 and 78% aa identity with the porcine and human enzymes, respectively. Two catalytically important aa residues, Tyr228 and His307, of the porcine enzyme, were both conserved in these three species. RNA blot hybridization analysis indicated that a DAO mRNA, of 2 kb, exists in mouse kidney and brain, but not liver. Synthesis of a functional mouse enzyme in Escherichia coli was achieved through the use of a vector constructed to insert the coding sequence of the mouse DAO cDNA downstream from the tac promoter of plasmid pKK223-3, which was designed so as to contain the lac repressor gene inducible by isopropyl-β- -thiogalactopyranoside. Immunoblot analysis confirmed the synthesis and induction of the mouse DAO protein, and the molecular size of the recombinant mouse DAO was found to be identical to that of the mouse kidney enzyme. Moreover, the maximum activity of the mouse recombinant DAO was estimated to be comparable with that of the porcine DAO synthesized in E. coli cells.  相似文献   

16.
A 483-bp cDNA was isolated from sea bass (Dicentrarchus labrax) head kidney leukocytes, dicentracin, using PCR primers designed from conserved moronecidin domains. Gene bank analysis revealed that dicentracin cDNA belongs to the moronecidin family. As deduced from alignment with Morone chrysops moronecidin, the precursor of 79 aa appeared to be composed of a signal peptide of 22 aa, followed by the mature AMP (antimicrobial peptide) of 22 aa named dicentracin, and a C-terminal extension of 35 aa. Dicentracin precursor displayed 3 aa substitutions with other moronecidin sequence but none in the mature peptide sequence. Using in situ hybridization assay, dicentracin gene expression was observed in 68–71% of peripheral blood leukocytes, kidney leukocytes or peritoneal cavity leukocytes without significant statistical differences. Dicentracin mRNA was observed in most of the granulocytes, as well as in monocytes from both peripheral blood and head kidney, and in macrophages from peritoneal cavity. No expression was observed in thrombocytes or in lymphocytes.  相似文献   

17.
TMEM16A protein, also known as anoctamin-1, has been recently identified as an essential component of Ca(2+)-activated Cl(-) channels. We previously reported the existence of different TMEM16A isoforms generated by alternative splicing. In the present study, we have determined the functional properties of a minimal TMEM16A protein. This isoform, called TMEM16A(0), has a significantly shortened amino-terminus and lacks three alternative segments localized in the intracellular regions of the protein (total length: 840 amino acids). TMEM16A(0) expression is associated with Ca(2+)-activated Cl(-) channel activity as measured by three different functional assays based on the halide-sensitive yellow fluorescent protein, short-circuit current recordings, and patch-clamp technique. However, compared to a longer isoform, TMEM16(abc) (total length: 982 amino acids), TMEM16A(0) completely lacks voltage-dependent activation. Furthermore, TMEM16A(0) and TMEM16A(abc) have similar but not identical responses to extracellular anion replacement, thus suggesting a difference in ion selectivity and conductance. Our results indicate that TMEM16A(0) has the basic domains required for anion transport and Ca(2+)-sensitivity. However, the absence of alternative segments, which are present in more complex isoforms of TMEM16A, modifies the channel gating and ion transport ability.  相似文献   

18.
Poly(A)+ RNA isolated from flower buds of Cynara cardunculus has been used to prepare a cDNA library. Screening of the cDNA after expression of cloned DNA with antibodies raised against the large subunit of cyprosin 3 resulted in the isolation of six positive clones. One of these clones (cypro1s; a 1.7 kb Eco RI fragment) codes for cyprosin. The nucleotide sequence contain a 1419 bp open reading frame coding for 473 amino acids (aa) including a putative full-length mature protein (440 aa) and a partial prosequence (33 aa). Cypro1s contains a 162 bp 3 non-coding region followed by a poly(A) tail. The deduced amino acid sequence shows high homology to other plant aspartic proteinases. The homology to mammalian and microbial aspartic proteinases is somewhat lower. Plant aspartic proteinases contain an insert of around 100 aa. We are modelling where this plant-specific insert will appear in the structure of cyprosin. Using cypro1s as a probe in northern blot analysis, the expression of cyprosin in developing flowers and other tissues has been studied. The signal on the northern blot increased for RNA samples from early (flower buds 6 mm in length) to later stages of floral development (flower buds up to 40 mm in length). In late stages of floral development (open flowers 50 mm in length and styles from such flowers) no hybridization signal was visualized showing that the synthesis of mRNA encoding the cyprosin starts in early stages of floral development and switches off at maturation of the flower. Southern blot analysis of genomic DNA showed 4–5 strong hybridizing bands and several minor bands indicating that the cyprosin genes are organized as a multi-gene family in C. cardunculus.  相似文献   

19.
Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways.  相似文献   

20.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号