首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

2.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

3.
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.  相似文献   

4.
Abelson interactor protein-1 (ABI-1) is an adaptor protein involved in actin reorganization and lamellipodia formation. It forms a macromolecular complex containing Hspc300/WASP family verprolin-homologous proteins 2/ABI-1/nucleosome assembly protein 1/PIR121 or Abl/ABI-1/WASP family verprolin-homologous proteins 2 in response to Rho family-dependent stimuli. Due to its role in cell mobility, we hypothesized that ABI-1 has a role in invasion and metastasis. In the present study, we found that weakly invasive breast cancer cell lines (MCF-7, T47D, MDA-MB-468, SKBR3, and CAMA1) express lower levels of ABI-1 compared with highly invasive breast cancer cell lines (MDA-MB-231, MDA-MB-157, BT549, and Hs578T), which exhibit high ABI-1 levels. Using RNA interference, ABI-1 was stably down-regulated in MDA-MB-231, which resulted in decreased cell proliferation and anchorage-dependent colony formation and abrogation of lamellipodia formation on fibronectin. Down-regulation of ABI-1 decreased invasiveness and migration ability and decreased adhesion on collagen IV and actin polymerization in MDA-MB-231 cells. Additionally, compared with control parental cells, ABI-1 small interfering RNA-transfected cells showed decreased levels of phospho-PDK1, phospho-Raf, phospho-AKT, total AKT, and AKT1. These data suggest that ABI-1 plays an important role in the spread of breast cancer and that this role may be mediated via the phosphatidylinositol 3-kinase pathway.  相似文献   

5.
Rac GTPases are known to play a crucial role in regulating cytoskeletal changes necessary for cell migration. Migration has been shown to be positively regulated by Rac in most cell types. However, there is also a large body of conflicting evidence in some other cell types with respect to the role of Rac in migration, suggesting that Rac GTPases regulate cell migration in a cell type-dependent manner. In the present study, we have characterized the effects of Rac1 GTPase inhibition on the migratory abilities of a number of breast cancer cell lines with differential degrees of tumorigenic and metastatic potentials. We show that Rac1 inhibition in non-metastatic (MCF-7, T-47D) or moderately metastatic (Hs578T) cell lines results in inhibition of migration, whereas in highly metastatic cell lines (MDA-MB-435, MDA-MB-231, and C3L5) Rac1 inhibition results in stimulation of migration. This stimulation of migration following Rac1 inhibition is also accompanied by the enhanced RhoA activity, suggesting a possible existence of a dominating role of RhoA over Rac1 in regulating intrinsic migration of the highly metastatic breast cancer cells.  相似文献   

6.
The small GTPase Cdc42 has been implicated as an important regulator of cell migration. However, whether Cdc42 plays similar role in all cancer cells irrespective of metastatic potential remains poorly defined. Here, we show by using three different breast cancer cell lines with different metastatic potential, the role of Cdc42 in cell migration/invasion and its relationship with a number of downstream signaling pathways controlling cell migration. Small interfering RNA (siRNA)-mediated knockdown of Cdc42 in two highly metastatic breast cancer cell lines (MDA-MB-231 and C3L5) resulted in enhancement, whereas the same in moderately metastatic (Hs578T) cell line resulted in inhibition of intrinsic cellular migration/invasion. Furthermore, Cdc42 silencing in MDA-MB-231 and C3L5 but not Hs578T cells was shown to be accompanied by increased RhoA activity and phosphorylation of protein kinase C (PKC)-δ, extracellular signal regulated kinase1/2 (Erk1/2), and protein kinase A (PKA). Pharmacological inhibition of PKCδ, MEK-Erk1/2, or PKA was shown to inhibit migration of both control and Cdc42-silenced MDA-MB-231 cells. Furthermore, introduction of constitutively active Cdc42 was shown to decrease migration/invasion of MDA-MB-231 and C3L5 but increase migration/invasion of Hs578T cells. This decreased migration/invasion of MDA-MB-231 and C3L5 cells was also shown to be accompanied by the decrease in the phosphorylations of PKCδ, Erk1/2, and PKA. These results suggested that endogenous Cdc42 could exert a negative regulatory influence on intrinsic migration/invasion and some potentially relevant changes in phosphorylation of PKCδ, Erk1/2, and PKA of some aggressive breast cancer cells.  相似文献   

7.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

8.
9.
The response of malignant and nonmalignant human breast cell lines to the growth inhibitory effects of monoclonal antibodies against the epidermal growth factor (EGF) receptor was studied. A series of human breast cell lines, which express EGF receptor, were used: MDA-468, MDA-231, and Hs578T human breast cancer cells and the transformed human mammary epithelial cell lines 184A1N4 and 184A1N4-T that have been benzo[a]pyrene immortalized and further transformed with SV40T, respectively. Four antibodies of two different classes were tested: 225 immunoglobulin G (IgG), 108.4 IgG, 96 immunoglobulin M (IgM), and 42 IgM. All four antibodies inhibited the anchorage-dependent and -independent, EGF-stimulated growth of 184A1N4 and 184A1N4-T cells, respectively, and this growth inhibition could be reversed by the addition of increasing concentrations of EGF. In contrast, the antibodies inhibited the anchorage-dependent and -independent growth of MDA-468 cells in the absence of exogenous EGF suggesting that the antibodies were acting to block access of an endogenously produced ligand to the EGF receptor. In the presence of antibody and increasing concentrations of EGF, MDA-468 cell growth was first stimulated then inhibited as the EGF concentration increased, thus, uncovering the growth stimulatory potential of low concentrations of EGF in these cells. Data is presented that indicates MDA-468 cells secrete a transforming growth factor with autocrine growth stimulatory capabilities. The growth of MDA-231 and Hs578T cells, which contain activated ras oncogenes, was not inhibited by the antibodies and the growth of these cell lines was not stimulated by EGF. Of the cell lines studied only MDA-468 cells appear to possess an autocrine growth stimulatory capacity.  相似文献   

10.
Park S  Kim ES  Noh DY  Hwang KT  Moon A 《Cytokine》2011,55(1):126-133
Ras expression has been suggested to be a marker for tumor aggressiveness of breast cancer. We previously showed that H-Ras, but not N-Ras, induced invasive/migratory phenotypes in MCF10A human breast epithelial cells. The present study aimed to determine the role of granulocyte colony-stimulating factor in H-Ras-induced malignant progression of human breast epithelial cells. Here, we show that G-CSF plays a crucial role in H-Ras-induced MCF10A cell invasion and migration. The siRNA-mediated knockdown of G-CSF significantly reduced H-Ras-induced matrix metalloproteinase (MMP)-2 expression, as well as invasion/migration, suggesting the functional significance of G-CSF in the invasive phenotype of human breast cells. Importantly, the induction of G-CSF expression conferred the invasive/migratory phenotypes to MCF10A cells with up-regulation of MMP-2 and activation of Rac1, MKK3/6, p38 MAPK, Akt, and ERKs. Knockdown of Rac1 by siRNA significantly inhibited MMP-2 upregulation and invasiveness of G-CSF MCF10A cells, demonstrating that G-CSF-induced MMP-2 upregulation and invasive phenotype is mediated by Rac1. Using human breast tissues and sera from breast cancer patients, we further demonstrate that the expression level of G-CSF is strongly correlated with pathologically-diagnosed breast cancer. These data provide a molecular basis for the crucial role of G-CSF in promoting invasiveness of human breast epithelial cells.  相似文献   

11.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

12.
Cytoskeletal remodeling is responsible for cell plasticity and facilitates differentiation, motility and adherence related functions. C3G (RAPGEF1), an exchange factor for Ras family of small GTPases, regulates cytoskeletal reorganization to induce filopodia in epithelial cells and neurite growth in neuroblastoma cells. Here we show that C3G overexpression induces neurite-like extensions (NLE) in MDA-MB-231 and BT549 breast carcinoma cells and not in a variety of other cancer cell lines examined. These processes were actin-rich with nodes, branches and microspikes. C3G associates with the cytoskeleton and its expression enabled stabilization of microtubules. NLE formation was dependent on Rap, Rac and Cdc42. C3G expression was associated with a decrease in cellular β-catenin levels specifically in MDA-MB-231 and BT549 cells. β-Catenin stabilization induced by GSK-3β inhibition, or coexpression of β-catenin, reduced C3G induced NLE formation. Time lapse analysis showed reduced motility of C3G expressing cells compared to GFP expressing cells. Our results suggest that C3G overexpression can induce phenotypic characteristics of neuronal cells in highly invasive breast cancer cells and inhibit their motility.  相似文献   

13.
Early prediction of metastatic breast cancer is important for improvement of prognosis and survival rate. The present study aimed to identify secreted protein biomarkers for detection of invasive breast cancer. To this end, we performed a comparative proteomic analysis by a combination of 2DE and MALDI‐TOF MS analysis of conditioned media from invasive H‐Ras MCF10A human breast epithelial cells and noninvasive MCF10A and N‐Ras MCF10A cells. We identified a list of 25 proteins that were strongly detected in media of H‐Ras MCF10A and focused on annexin II, which was shown to be involved in cell motility. Invasive triple‐negative human breast carcinoma cells, Hs578T, and MDA‐MB‐231, showed increased levels of annexin II in media, demonstrating that secretion of annexin II correlated well with the invasive phenotype of cells. We demonstrated a crucial role of annexin II in breast cell invasion/migration and actin cytoskeleton reorganization required for filopodia formation. Annexin II levels in the plasma samples and breast cancer tissues of breast cancer patients were significantly higher than those of normal groups, providing a clinical relevance to our in vitro findings. Taken together, we identified annexin II as a novel secretory biomarker candidate for invasive breast cancer, especially estrogen receptor‐negative breast cancer.  相似文献   

14.
We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted Hs578T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.  相似文献   

15.
Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated MCF10A human breast epithelial cell lines. Using these, we showed that p38 kinase is a key signaling molecule differentially regulated between H-Ras and N-Ras, leading to H-Ras-specific induction of invasive and migrative phenotypes. The present study is to further investigate H-Ras- and N-Ras-mediated signaling pathways and to unveil how these pathways are integrated for regulation of invasive/migrative phenotypic conversion of human breast epithelial cells. Here we report that the Rac-MAPK kinase (MKK)3/6-p38 pathway is a unique signaling pathway activated by H-Ras, leading to the invasive/migrative phenotype. In contrast, Raf-MEK-ERK and phosphatidylinositol 3-kinase-Akt pathways, which are fundamental to proliferation and differentiation, are activated by both H-Ras and N-Ras. A significant role for p38 in cell invasion is further supported by the observation that p38 activation by MKK6 transfection is sufficient to induce invasive and migrative phenotypes in MCF10A cells. Activation of the MKK6-p38 pathway results in a marked induction of matrix metalloproteinase (MMP)-2, whereas it had little effect on MMP-9, suggesting MMP-2 up-regulation by MKK6-p38 pathway as a key step for H-Ras-induced invasion and migration. We also provide evidence for cross-talk among the Rac, Raf, and phosphatidylinositol 3-kinase pathways critical for regulation of MMP-2 and MMP-9 expression and invasive phenotype. Taken together, the present study elucidated the role of the Rac-MKK3/6-p38 pathway leading to H-Ras-specific induction of malignant progression in breast epithelial cells, providing implications for developing therapeutic strategies for mammary carcinoma to target Ras downstream signaling molecules required for malignant cancer cell behavior but less critical for normal cell functions.  相似文献   

16.
17.
Epidemiological evidence suggests tea (Camellia sinensis L.) has chemopreventive effects against various tumors. Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Here we have tested the effects of green tea on mammary tumorigenesis using the 7,12-dimethylbenz(a)anthracene (DMBA) Sprague-Dawley (S-D) rat model. We report that green tea significantly increased mean latency to first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; although, it did not affect tumor number in the female rats. Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27(Kip1) cyclin-dependent kinase inhibitor (CKI) expression. Hs578T cells expressing elevated levels of p27(Kip1) protein due to stable ectopic expression displayed increased G1 arrest. Thus, green tea had significant chemopreventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27(Kip1) CKI.  相似文献   

18.
The growth of chemically induced mammary tumors is inhibited by both hormone manipulation as well as by retinoids. Numerous mammary carcinoma cell lines are also inhibited by retinoids. Co-treatment of estrogen receptor (ER)-positive breast cancer cells resulted in an additive effect in terms of inhibition of cellular proliferation. The addition of varying concentrations of retinoic acid (RA) to varying concentrations of tamoxifen (TMX) resulted in an additive effect on the inhibition of proliferation of the ER-positive human carcinoma cell lines (MCF-7). Co-treatment of MCF-7 cells over time with RA and TMX resulted in enhanced inhibition of growth. A similar phenomenon was observed when other synthetic retinoids were combined with TMX. This enhanced inhibition by the combination of retinoids and TMX was also observed with other ER-positive cell lines (ZR-75, T47-D), while no effect was noted on the ER-negative cell lines (MDA-MB-231, Hs578T).  相似文献   

19.
The molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells. Attachment of invasive breast cancer cells (MDA-MB-231) to human umbilical vein endothelial cells induced tyrosine phosphorylation of VE-cad, dissociation of β-catenin from VE-cad, and retraction of endothelial cells. Breast cancer cell-induced tyrosine phosphorylation of VE-cad was mediated by activation of the H-Ras/Raf/MEK/ERK signaling cascade and depended on the phosphorylation of endothelial myosin light chain (MLC). The inhibition of H-Ras or MLC in endothelial cells inhibited TEM of MDA-MB-231 cells. VE-cad tyrosine phosphorylation in endothelial cells induced by the attachment of MDA-MB-231 cells was mediated by MDA-MB-231 α2β1 integrin. Compared with highly invasive MDA-MB-231 breast cancer cells, weakly invasive MCF-7 breast cancer cells expressed lower levels of α2β1 integrin. TEM of MCF-7 as well as induction of VE-cad tyrosine phosphorylation and dissociation of β-catenin from the VE-cad complex by MCF-7 cells were lower than in MDA-MB-231 cells. These processes were restored when MCF-7 cells were treated with β1-activating antibody. Moreover, the response of endothelial cells to the attachment of prostatic (PC-3) and ovarian (SKOV3) invasive cancer cells resembled the response to MDA-MB-231 cells. Our study showed that the MDA-MB-231 cell-induced disruption of endothelial adherens junction integrity is triggered by MDA-MB-231 cell α2β1 integrin and is mediated by H-Ras/MLC-induced tyrosine phosphorylation of VE-cad.  相似文献   

20.
Prolonged exposure to estrogens is a significant risk factor for the development of breast cancer. Estrogens exert carcinogenic effects by stimulating cell proliferation or through oxidative metabolism that forms DNA-damaging species. In the present study, we aimed to provide a better understanding of estrogen metabolism and actions in breast cancer, and to characterize model breast cancer cell lines. We determined the expression profiles of the genes for the estrogen and progesterone receptors, and for 18 estrogen-metabolizing enzymes in eight cell lines: MCF-7, MCF-10A, T47D, SKBR3, MDA-MB-231, MDA-MB-361, Hs-578T and Hs-578Bst cells. Similar gene expression profiles of these receptors and enzymes for the formation of estradiol via the aromatase and sulfatase pathways were observed in the MCF-7 and T47D metastatic cell lines. The MDA-MB-361 cells expressed ESR1, ESR2 and PGR as well, but differed in expression of the estrogen-metabolizing enzymes. In the MDA-MB-231 and SKBR3 cells, all of these estrogen-forming enzymes were expressed, although the lack of ESR1 and the low levels of ESR2 expression suggested that the estrogens can only act via non-ER mediated pathways. In the non-tumorigenic MCF-10A cell line, the key enzymes of the aromatase pathway were not expressed, and the sulfatase pathway also had a marginal role. The comparison between gene expression profiles of the non-tumorigenic Hs-578Bst cells and the cancerous Hs-578T cells revealed that they can both form estrogens via the sulfatase pathway, while the aromatase pathway is less important in the Hs-578Bst cells. The Hs-578T cells showed low levels of ESR1, ESR2 and PGR expression, while only ESR1 and ESR2 expression was detected in the Hs-578Bst cells. Our data show that the cell lines examined provide the full range of model systems and should further be compared with the expression profiles of breast cancer specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号