首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过实验和临床观察幽门螺杆菌(Helicobacter pylori)对胃上皮细胞间隙连接超微结构的影响,从细胞间隙连接角度探讨H. pylori致癌机制.将不同H. pylori菌株与BGC-823细胞共培养24 h或 48 h,用原位固定与原位包埋法透射电镜观察细胞间隙连接超微结构变化.对70例胃癌患者,用快速尿素酶试验、碱性品红染色和14C尿素呼气实验检测H. pylori,PCR法检测H. pylori CagA基因,及透射电镜观察胃上皮细胞间隙连接超微结构变化.结果显示,未加H. pylori组BGC-823细胞可见较多细胞连接及连接复合体,加H. pylori各组细胞的连接数、单位周长连接数与单位周长连接长度均小于未加H. pylori组,而细胞间隙最小宽度大于未加H. pylori组(P < 0.001或P < 0.005),且CagA+ 的NCTC J99组、临床株GC 01组和NCTC 11639组细胞连接数、单位周长连接数均小于CagA- 的NCTC 12908组(P < 0.001或P < 0.05),NCTC J99组与临床株GC 01组细胞单位周长连接长度短于NCTC 12908组(P < 0.001).胃癌患者H. pylori感染组细胞连接数、单位周长连接数与单位周长连接长度均小于无H. pylori感染组,细胞间隙最小宽度大于无H. pylori感染组(P < 0.001),且CagA+ H. pylori感染者细胞连接数、单位周长连接数与单位周长连接长度均小于CagA- H. pylori感染者,细胞间隙最小宽度大于CagA- H. pylori感染者.上述结果表明,胃上皮细胞间隙连接改变与H. pylori感染,特别是CagA+ H. pylori感染有关.  相似文献   

2.

Introduction

DNA methyltransferase-1(DNMT1) is an important enzyme in determining genomic methylation patterns in mammalian cells. We investigated the associations between SNPs in the DNMT1 gene and risks of developing H. pylori seropositivity, gastric atrophy and gastric cancer in the Chinese population.

Methods

The study consisted of 447 patients with gastric cancer; 111 patients with gastric atrophy; and 961 healthy controls. Five SNPs, rs10420321, rs16999593, rs8101866, rs8111085 and rs2288349 of the DNMT1 gene were genotyped. Anti-H.pylori IgG was detected by ELISA. Gastric atrophy was screened by the level of serum pepsinogen Ιand II and then confirmed by endoscopy and histopatholgical examinations.

Results

The age- and sex-adjusted OR of H. pylori seropositivity was 0.67 (95%CI: 0.51–0.87) for rs8111085 TC/CC genotypes, significantly lower than the TT genotype in healthy controls. The adjusted OR of H.pylori seropositivity was 0.68 (95%CI: 0.52–0.89) for rs10420321 AG/GG genotypes. In addition, patients carrying rs2228349 AA genotype have a significantly increased risk for H.pylori seropositivity (OR = 1.67; 95%CI: 1.02–2.75). Further haplotype analyses also showed that the ATTTG and ATCTA are significantly associated with increased risks in H.pylori infection compared to the GTCCG haplotype (OR = 1.38, 95%CI: 1.08–1.77; OR = 1.40, 95% CI: 1.09–1.80). The adjusted ORs of gastric atrophy were 1.66 (95%CI: 1.06–2.61) for rs10420321 GG genotype, and 1.67 (95%CI 1.06–2.63, P = 0.03) for rs8111085 CC genotype, but no association was found between SNPs in the DNMT1 gene and risk of developing gastric cancer.

Conclusions

Individuals with rs10420321 GG and rs8111085 CC genotype of the DNMT1 gene were associated with reduced risks for H.pylori infection. On the other hand, higher risks of gastric atrophy were found in the carriers with these two genotypes compared to other genotypes. Our results suggested that SNPs of DNMT1 could be used as genotypic markers for predicting genetic susceptibilities to H.pylori infection and risks in gastric atrophy.  相似文献   

3.
4.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

5.
6.
γ‐Glutamyltranspeptidase and asparaginase have been shown to play important roles in Helicobacter pylori colonization and cell death induced by H. pylori infection. In this study, the association of γ‐glutamyltranspeptidase and asparaginase was elucidated by comparing activities of both deamidases in H. pylori strains from patients with chronic gastritis, gastric and duodenal ulcers, and gastric cancer. γ‐Glutamyltranspeptidase activities in H. pylori strains from patients with gastric cancer were significantly higher than in those from patients with chronic gastritis or gastric ulcers. There was a wide range of asparaginase activities in H. pylori strains from patients with gastric cancer and these were not significantly than those from patients with other diseases. To identify the contributions of γ‐glutamyltranspeptidase and asparaginase to gastric cell inflammation, human gastric epithelial cells (AGS line) were infected with H. pylori wild‐type and knockout strains and inflammatory responses evaluated by induction of interleukin‐8 (IL‐8). IL‐8 response was significantly decreased by knockout of the γ‐glutamyltranspeptidase‐encoding gene but not by knockout of the asparaginase‐encoding gene. Additionally, IL‐8 induction by infection with the H. pylori wild‐type strain was significantly decreased by adding glutamine during infection. These findings indicate that IL‐8 induction caused by γ‐glutamyltranspeptidase activity in H. pylori is mainly attributable to depletion of glutamine. These data suggest that γ‐glutamyltranspeptidase plays a significant role in the chronic inflammation caused by H. pylori infection.  相似文献   

7.
Helicobacter pylori-induced inflammation significantly increases the risk of gastric cancer. To investigate the role of H. pylori infection in gastric epithelial cell carcinogenesis, flow cytometry was used to analyze the apoptosis of gastric epithelial cells infected by H. pylori. Next, LTQ MS mass spectrometry (MS) was applied to identify protein changes in gastric epithelial cells infected with H. pylori, and then bioinformatics was adopted to analyze the cellular localization and biological function of differential proteins. LTQ MS/MS successfully identified identified 22 differential proteins successfully, including 20 host-cell proteins and two H. pylori bacterial proteins. Also, human proteins were located in all areas of cells and involved in various cell biological functions. The oncogene proteins p53, p16, and C-erbB-2 proteins in H. pylori-infected RGM-1 cells were remarkably increased from the analysis by Western blot analysis. H. pylori infection of gastric epithelial cells leads to changes in various protein components in the cell, and enhances the expression of oncogene proteins, thereby increasing the possibility of possibility of carcinogenesis of H. pylori infection.  相似文献   

8.
Background and Aims: The results of a randomized controlled study and meta‐analysis study have recently proved that Helicobacter pylori eradication has a preventive effect against the development of metachronous and primary gastric cancer. However, gastric cancer is sometimes detected after successful eradication. There is a lack of study about gastric cancers in eradicated patients. To clarify the characteristics of gastric cancers detected after H. pylori eradication, we analyzed the clinicopathological features of these cancers. Methods: The subjects were 18 early‐stage gastric cancer specimens resected from 17 patients who had received successful eradication of H. pylori from February 1995 to March 2009. The control group consisted of 36 specimens from noneradicated patients with persistent H. pylori infection who were matched with the subjects in age, sex, and depth of invasion. Clinicopathological features and mucin phenotypes of gastric cancer were clinically and immunohistologically evaluated. Results: The average diameter of gastric cancer was smaller and Ki‐67 index was lower in the eradication group. The morphological distribution of depression types was significantly lower in the control group. Immunohistochemical phenotyping revealed that 72.2% of the lesions in the eradicated group were complete gastric type or gastric predominant mixed type, whereas the percentages of gastric type and intestinal type in the control group were similar. Conclusion: Our findings indicate that the clinicopathological characteristics of gastric cancers detected after H. pylori eradication are different from those of gastric cancers in patients with persistent H. pylori infection. H. pylori eradication may suppress intestinalization during the development of gastric cancer.  相似文献   

9.
Gastric cancer is a life-threatening disease; resulting from interaction among genetic, epigenetic, and environmental factors. Aberrant dysregulation and methylation changes in Wnt/β-catenin signaling downstream elements are a prevalent phenomenon encountered in gastric tumorigenesis. Also, viral infections play a role in gastric cancer development. CTNNBIP1 (β-catenin interacting protein 1) gene is an antagonist of Wnt signaling which binds to the β-catenin molecules. The CTNNBIP1 function as tumor suppressor gene or oncogene in different types of cancer is controversial. Moreover, its function and regulatory mechanisms in gastric cancer progression is unknown. In the present study, we examined CTNNBIP1 gene expression, the methylation status of the regulatory region of the gene, and their association with Epstein–Barr virus (EBV), and cytomegalovirus (CMV) and Helicobacter pylori infections in human gastric adenocarcinoma tissues in comparison with their adjacent nontumoral tissues. Our data revealed a significant downregulation of CTNNBIP1 in gastric tumors. Female patients showed lower level of CTNNBIP1 than males (p < 0.05). Also, decreased expression of CTNNBIP1 was markedly associated with well-differentiated tumor grades (p < 0.05). No methylation change was observed between tumoral and nontumoral tissues. Additionally, CTNNBIP1 down regulation was significantly associated with CMV infection (p < 0.05). In the absence of EBV infection, lower expression of CTNNBIP1 was observed. There was no association between H. pylori infection and CTNNBIP1 expression. Our findings revealed the tumor suppressor role for CTNNBIP1 in gastric adenocarcinoma. Interestingly, EBV and CMV infections modulate CTNNBIP1 expression.  相似文献   

10.
Cytotoxin-associated gene A (CagA) acts directly on gastric epithelial cells. However, the roles of CagA in host adaptive immunity against Helicobacter pylori (H. pylori) infection are not fully understood. In this study, to investigate the roles of CagA in the development of H. pylori-induced chronic gastritis, we used an adoptive-transfer model in which spleen cells from C57BL/6 mice with or without H. pylori infection were transferred into RAG2−/− mice, with gastric colonization of either CagA+H. pylori or CagAH. pylori. Colonization of CagA+H. pylori but not CagAH. pylori in the host gastric mucosa induced severe chronic gastritis in RAG2−/− mice transferred with spleen cells from H. pylori-uninfected mice. In addition, when CagA+H. pylori-primed spleen cells were transferred into RAG2−/− mice, CD4+ T cell infiltration in the host gastric mucosa were observed only in RAG2−/− mice infected with CagA+H. pylori but not CagAH. pylori, suggesting that colonization of CagA+H. pylori in the host gastric mucosa is essential for the migration of H. pylori-primed CD4+ T cells. On the other hand, transfer of CagAH. pylori-primed spleen cells into CagA+H. pylori-infected RAG2−/− mice induced more severe chronic gastritis with less Foxp3+ regulatory T-cell infiltration as compared to transfer of CagA+H. pylori-primed spleen cells. In conclusion, CagA in the stomach plays an important role in the migration of H. pylori-primed CD4+ T cells in the gastric mucosa, whereas CagA-dependent T-cell priming induces regulatory T-cell differentiation, suggesting dual roles for CagA in the pathophysiology of H. pylori-induced chronic gastritis.  相似文献   

11.
Zhang Q  Li Y  Li X  Zhou W  Shi B  Chen H  Yuan W 《Molecular biology reports》2009,36(6):1461-1467
Introduction PARP-1 plays important role in the BER (base excision repair) and maintenance of genomic integrity. Previous study found the Val762Ala genetic variant in the PARP-1 gene contributed to susceptibility of some cancers and decreased PARP-1 enzyme activity in response to oxidative damage. Helicobacter pylori (H. pylori) infection was thought to be one of the major causes of gastric cancer. In this study, we investigated the association between the PARP-1 Val762Ala polymorphism, CagA+ H. pylori infection, and the risk for gastric cancer. Methods This hospital-based, case–control study was performed involving 556 individuals (236 cases with gastric cancer and 320 controls without evidence of neoplasm and gastrointestinal disease) using a PCR-RFLP method. Chi-square test and logistic regression analysis were used to count OR and 95% CI. Results 762Ala/Ala genotype was overrepresented in the cases (16.9%) compared with controls (10.3%), (OR, 1.942; 95% CI, 1.157–3.257, P = 0.011). Multivariate analysis showed that two factors were significantly associated with risk of gastric cancer, including CagA+ H. pylori infection (OR, 2.562; 95% CI, 1.174–5.240, P = 0.037), PARP-1 762AA genotype (OR, 1.772; 95% CI, 1.065–3.867; P = 0.042). Stratification analysis indicated that among Cag+ H. pylori positive subjects, 762Ala/Ala carriers had higher risk for developing gastric cancer compared with 762Val/Val carrier (OR, 2.337; 95% CI, 1.148–4.758; P = 0.017). Conclusion PARP-1 762Ala/Ala could be a risk factor for gastric cancer in Han Chinese population; PARP-1 762Val/Ala polymorphism and Cag+ H. pylori infection jointly contribute to higher risk for gastric cancer.  相似文献   

12.
13.
Background. Cell cycle regulatory proteins may be critical targets during carcinogenesis. We have previously shown that chronic H. pylori infection is associated with decreased expression of the cyclin dependent kinase inhibitor (CDI) p27kip1. Loss of p27kip1 and p16Ink4a (p16) expression, another CDI, has been reported during the progression of gastric tubular adenomas to advanced gastric cancer. The aim of the current study was to examine whether H. pylori infection also affects the expression of p16 in the gastric mucosa of H. pylori‐infected patients. Methods. p16 expression was evaluated in gastric antral biopsies by immunohistochemistry in 50 patients with nonulcer dyspepsia (n = 18 uninfected, n = 32 H. pylori infected, 24 by cagA+ strains). Adjacent sections were stained for proliferating epithelial cells (by Ki67) and for apoptotic cells (by TUNEL assay). Results. Both in H. pylori infected and uninfected patients the expression of p16 was higher in the neck and base of the gland than in the foveolar region. Epithelial staining for p16 was increased with H. pylori infection (31.3% vs. 11.1% in the foveolar region, 68.8% vs. 27.8% in the neck and 75% vs. 50% in the glandular base). There was no correlation between the expression of 16 and proliferation but there was a significant positive correlation between apoptosis and 16 immunostaining. Conclusions. The tumor suppressor gene 16 is over expressed in gastric epithelial cells of H. pylori infected patients and this is associated with an increase in apoptosis. These findings suggest a possible role for this cell cycle regulator in the increase in gastric cell turnover that is associated with H. pylori infection.  相似文献   

14.

Background

Gastric cancer is one of the most common and lethal malignant cancers worldwide, and numerous epidemiological studies have demonstrated that Helicobacter pylori (H. pylori) infection plays a key role in the development of gastric carcinomas. Our previous studies showed that aquaporin 3 (AQP3) is overexpressed in gastric carcinoma and promotes the migration and proliferation of human gastric carcinoma cells, suggesting that AQP3 may be a potentially important determinant of gastric carcinoma. However, the role of AQP3 in H. pylori carcinogenesis is unknown.

Methods

The AQP3 protein and H. pylori were detected in human gastric tissues by immunohistochemistry and modified Giemsa staining respectively. AQP3 knockdown was obtained by small interfering (si) RNA. Western blot assays and RT-PCR were used to evaluate the change of AQP3 in the human gastric cancer AGS and SGC7901 cell lines after co-culture with H. pylori. Sprague Dawley rats were orally inoculated with H. pylori to establish a rat model colonized by H. pylori.

Results

The present study found that AQP3 expression correlated with H. pylori infection status in gastric cancer tissues and corresponding normal mucosa, and H. pylori co-culture upregulated AQP3 expression in human gastric adenocarcinoma cells in vitro via the extracellular signal-regulated kinase signaling pathway. H. pylori infection also increased AQP3 expression in gastric mucosa colonized by H. pylori in a Sprague Dawley rat model.

Conclusions

These findings provide further information to understand the mechanism of H. pylori carcinogenesis and a potential strategy for the treatment of H. pylori-associated gastric carcinoma.  相似文献   

15.
A CagA-positive Helicobacter pylori (H. pylori) infection can cause malignant transformation of human gastric mucosal epithelial cells, and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) is a chemical carcinogen that induces gastric carcinogenesis. Whether this environmental chemocarcinogen may synergistically enhance the risk of H. pylori-infected gastric cancer remains unclear. In this study, we adopted a chronic CagA-positive H. pylori infection with or without MNNG coinduction to establish a cellular model in GES-1 cells and an animal model in C57BL/6J mice. The proliferation, cell phenotype, apoptosis, epithelial-mesenchymal transition (EMT), stemness and tumorigenicity of gastric mucosal epithelial cells were analyzed in vitro and in vivo. The results showed that chronic H. pylori-infected GES-1 cells displayed inhibited apoptosis, abnormal proliferation, enhanced invasion, and migration, increased EMT/mesenchymal phenotype, colony formation and stem cell-like properties, and enhanced tumorsphere-formatting efficiency as well as CD44 expression, a known gastric cancer stem cell (CSC) marker. MNNG synergistically promoted the above actions of chronic H. pylori infection. Further studies in chronic H. pylori-infected C57BL/6J mice models showed that an increased incidence of premalignant lesions in the gastric mucosa tissue of the H. pylori-infected mice had occurred, the mouse gastric mucosa cells exhibited similar mesenchymal and CSC-like properties in the above GES-1 cells, and precancerous lesions and EMT/CSC-like phenotypes were reinforced by the synergistic action of MNNG stimulation. H. pylori infection and/or MNNG induction were capable of causing enhanced expression and activation of Wnt2 and β-catenin, indicating that the Wnt/β-catenin pathway is involved in the actions of H. pylori and MNNG. Taken together, these findings suggest that chronic CagA-positive H. pylori infection with MNNG stimulation synergistically induces mesenchymal and CSC-like properties of gastric mucosal epithelial cells.  相似文献   

16.
Background. Helicobacter pylori is accepted as a definite human gastric carcinogen from an epidemiological point of view despite insufficient experimental data. Although we previously showed that the number of p53 immunopositive cells in the atrophic gastric mucosa of H. pylori‐infected Japanese monkeys gradually increased over time, data on p53 gene mutations were not obtained in that study. To obtain direct evidence of carcinogenesis associated with H. pylori infection, we investigated whether p53 gene mutations are present in the gastric mucosa of a nonhuman primate model susceptible to H. pylori. Materials and Methods. Using the DNA from gastric tissues obtained from six H. pylori‐uninfected monkeys of different ages, nucleotide sequence of the wild‐type p53 gene was determined by amplification of exons (Ex) 5, 6, 7 and 8 and sequencing. Gastric specimens obtained from eight Japanese monkeys that had been infected with H. pylori for different lengths of time (1.5–7.5 years), were analyzed for mutations in exons 5–8 of p53. Results. In the six H. pylori‐uninfected monkeys, nucleotide sequences of p53 Ex 5–8 were completely common and no mutations were noted. However, among the monkeys that were infected with H. pylori over various periods of time, there was an accumulation of p53 nucleotide (amino acid) substitutions as the gastric atrophy score increased. Conclusions. We conclude that the appearance of p53 gene mutation may be closely associated with the degree of gastric mucosal atrophy, which depends on the duration of H. pylori infection. Searching for p53 gene mutations may be useful for studying the progression of gastric carcinogenesis associated with H. pylori.  相似文献   

17.
Gastric cancer is associated with chronic inflammation and Helicobacter pylori infection. Th17 cells are CD4+ T cells associated with infections and inflammation; but their role and mechanism of induction during carcinogenesis is not understood. Gastric myofibroblasts/fibroblasts (GMF) are abundant class II MHC expressing cells that act as novel antigen presenting cells. Here we have demonstrated the accumulation of Th17 in H. pylori-infected human tissues and in the gastric tumor microenvironment. GMF isolated from human gastric cancer and H. pylori infected tissues co-cultured with CD4+ T cells induced substantially higher levels of Th17 than GMF from normal tissues in an IL-6, TGF-β, and IL-21 dependent manner. Th17 required interaction with class II MHC on GMF for activation and proliferation. These studies suggest that Th17 are induced during both H. pylori infection and gastric cancer in the inflammatory milieu of gastric stroma and may be an important link between inflammation and carcinogenesis.  相似文献   

18.

Background

Our previous works have demonstrated that Helicobacter pylori (Hp) infection can alter histone H3 serine 10 phosphorylation status in gastric epithelial cells. However, whether Helicobacter pylori‐induced histone H3 serine 10 phosphorylation participates in gastric carcinogenesis is unknown. We investigate the expression of histone H3 serine 10 phosphorylation in various stages of gastric disease and explore its clinical implication.

Materials and Methods

Stomach biopsy samples from 129 patients were collected and stained with histone H3 serine 10 phosphorylation, Ki67, and Helicobacter pylori by immunohistochemistry staining, expressed as labeling index. They were categorized into nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, low‐grade intraepithelial neoplasia, high‐grade intraepithelial neoplasia, and intestinal‐type gastric cancer groups. Helicobacter pylori infection was determined by either 13C‐urea breath test or immunohistochemistry staining.

Results

In Helicobacter pylori‐negative patients, labeling index of histone H3 serine 10 phosphorylation was gradually increased in nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia groups, peaked at low‐grade intraepithelial neoplasia, and declined in high‐grade intraepithelial neoplasia and gastric cancer groups. In Helicobacter pylori‐infected patients, labeling index of histone H3 serine 10 phosphorylation followed the similar pattern as above, with increased expression over the corresponding Helicobacter pylori‐negative controls except in nonatrophic gastritis patient whose labeling index was decreased when compared with Helicobacter pylori‐negative control. Labeling index of Ki67 in Helicobacter pylori‐negative groups was higher in gastric cancer than chronic atrophic gastritis and low‐grade intraepithelial neoplasia groups, and higher in intestinal metaplasia group compared with chronic atrophic gastritis group. In Helicobacter pylori‐positive groups, Ki67 labeling index was increased stepwise from nonatrophic gastritis to gastric cancer except slightly decrease in chronic atrophic gastritis group. In addition, we noted that histone H3 serine 10 phosphorylation staining is accompanied with its location changes from gastric gland bottom expanded to whole gland as disease stage progress.

Conclusions

These results indicate that stepwise gastric carcinogenesis is associated with altered histone H3 serine 10 phosphorylation, Helicobacter pylori infection enhances histone H3 serine 10 phosphorylation expression in these processes; it is also accompanied with histone H3 serine 10 phosphorylation location change from gland bottom staining expand to whole gland expression. The results suggest that epigenetic dysregulation may play important roles in Helicobacter pylori‐induced gastric cancer.  相似文献   

19.
Helicobacter pylori infection of the stomach is associated with the development of gastritis, peptic ulcers, and gastric adenocarcinomas, but the mechanisms are unknown. MUC1 is aberrantly overexpressed by more than 50% of stomach cancers, but its role in carcinogenesis remains to be defined. The current studies were undertaken to identify the genetic mechanisms regulating H. pylori-dependent MUC1 expression by gastric epithelial cells. Treatment of AGS cells with H. pylori increased MUC1 mRNA and protein levels, and augmented MUC1 gene promoter activity, compared with untreated cells. H. pylori increased binding of STAT3 and MUC1 itself to the MUC1 gene promoter within a region containing a STAT3 binding site, and decreased CpG methylation of the MUC1 promoter proximal to the STAT3 binding site, compared with untreated cells. These results suggest that H. pylori upregulates MUC1 expression in gastric cancer cells through STAT3 and CpG hypomethylation.  相似文献   

20.
DNA methylation changes are known to occur in gastric cancers and in premalignant lesions of the gastric mucosae. In order to examine variables associated with methylation levels, we quantitatively evaluated DNA methylation in tumors, non-tumor gastric mucosae, and in gastric biopsies at promoters of 5 genes with methylation alterations that discriminate gastric cancers from non-tumor epithelia (EN1, PCDH10, RSPO2, ZIC1, and ZNF610). Among Colombian subjects at high and low risk for gastric cancer, biopsies from subjects from the high-risk region had significantly higher levels of methylation at these 5 genes than samples from subjects in the low risk region (p ≤ 0.003). When results were stratified by Helicobacter pylori infection status, infection with a cagA positive, vacA s1m1 strain was significantly associated with highest methylation levels, compared with other strains (p = 0.024 to 0.001). More severe gastric inflammation and more advanced precancerous lesions were also associated with higher levels of DNA methylation (p ≤ 0.001). In a multivariate model, location of residence of the subject and the presence of cagA and vacA s1m1 in the H. pylori strain were independent variables associated with higher methylation in all 5 genes. High levels of mononuclear cell infiltration were significantly related to methylation in PCDH10, RSPO2, and ZIC1 genes. These results indicate that for these genes, levels of methylation in precancerous lesions are related to H. pylori virulence, geographic region and measures of chronic inflammation. These genes seem predisposed to sustain significant quantitative changes in DNA methylation at early stages of the gastric precancerous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号