首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Evolution of the nuclear receptor gene superfamily.   总被引:54,自引:6,他引:48       下载免费PDF全文
V Laudet  C Hnni  J Coll  F Catzeflis    D Sthelin 《The EMBO journal》1992,11(3):1003-1013
  相似文献   

16.
Pulses of the steroid hormone ecdysone activate genetic regulatory hierarchies that coordinate the developmental changes associated with Drosophila metamorphosis. A high-titer ecdysone pulse at the end of larval development triggers puparium formation and induces expression of the DHR3 orphan nuclear receptor. Here we use both a heat-inducible DHR3 rescue construct and clonal analysis to define DHR3 functions during metamorphosis. Clonal analysis reveals requirements for DHR3 in the development of adult bristles, wings, and cuticle, and no apparent function in eye or leg development. DHR3 mutants rescued to the third larval instar also reveal essential functions during the onset of metamorphosis, leading to lethality during prepupal and early pupal stages. The phenotypes associated with these lethal phases are consistent with the effects of DHR3 mutations on ecdysone-regulated gene expression. Although DHR3 has been shown to be sufficient for early gene repression at puparium formation, it is not necessary for this response, indicating that other negative regulators may contribute to this pathway. In contrast, DHR3 is required for maximal expression of the midprepupal regulatory genes, EcR, E74B, and betaFTZ-1. Reductions in EcR and betaFTZ-F1 expression, in turn, lead to submaximal early gene induction in response to the prepupal ecdysone pulse and corresponding defects in adult head eversion and salivary gland cell death. These studies demonstrate that DHR3 is an essential regulator of the betaFTZ-F1 midprepupal competence factor, providing a functional link between the late larval and prepupal responses to ecdysone. Induction of DHR3 in early prepupae ensures that responses to the prepupal ecdysone pulse will be distinct from responses to the late larval pulse and thus that the animal progresses in an appropriate manner through the early stages of metamorphosis.  相似文献   

17.
18.
19.
20.
Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号